Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New classes of magnetoelectric materials promise advances in computing technology

08.02.2013
Although scientists have been aware that magnetism and electricity are two sides of the same proverbial coin for almost 150 years, researchers are still trying to find new ways to use a material’s electric behavior to influence its magnetic behavior, or vice versa.
Thanks to new research by an international team of researchers led by the U.S. Department of Energy’s Argonne National Laboratory, physicists have developed new methods for controlling magnetic order in a particular class of materials known as "magnetoelectrics."

Magnetoelectrics get their name from the fact that their magnetic and electric properties are coupled to each other. Because this physical link potentially allows control of their magnetic behavior with an electrical signal or vice versa, scientists have taken a special interest in magnetoelectric materials.

"Electricity and magnetism are intrinsically coupled – they’re the same entity," said Philip Ryan, a physicist at Argonne’s Advanced Photon Source. "Our research is designed to accentuate the coupling between the electric and magnetic parameters by subtly altering the structure of the material."

The Argonne-led team focused on the compound EuTiO3 (europium-titanium oxide), which has a simple atomic structure that suited it especially well to the experiment. The titanium atom sits in the middle of a cage constructed of the europium and oxygen atoms. By first compressing the cage through growing a thin film of EuTiO3 on a similar crystal with a smaller lattice and then applying a voltage, the titanium shifts slightly, electrically polarizing the system, and more importantly, changing the magnetic order of the material.

"The europium and the titanium combine to control the two properties," Ryan said. "The position of the titanium influences the electric behavior, while the europium generates the magnetic nature. There’s a shared responsibility for the system’s coupling behavior."

This new approach to cross-coupling magnetoelectricity could prove a key step toward the development of next-generation memory storage, improved magnetic field sensors, and many other applications long dreamed about. Unfortunately, scientists still have a ways to go to translating these findings into commercial devices.

Potential magnetic and electric memories each have a distinct appeal to researchers. Electric memories – like the kind used into today’s electronics – allow computers to write data fast and very efficiently. Magnetic memories are less energy efficient, but are extraordinarily robust.

"The more we learn about magnetoelectrics, the more we open up this space that gives us the best of both worlds," Ryan said.

Because the electric and magnetic parameters in these particular materials are so strongly linked, engineers might also be able to use them in the future to create non-binary memories.

"Instead of having just a ‘0’ or a ‘1,’ you could have a broader range of different values," Ryan said. "A lot of people are looking into what that kind of logic would look like."

A paper based on the research, "Reversible control of magnetic interactions by electric field in a single-phase material," was published in Nature Communications.

A portion of the research was funded by the U.S. Department of Energy’s Office of Science. The research was also supported by the National Science Foundation, and the EPSRC (United Kingdom-funded beamline at the European Synchrotron Radiation Facility.)

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit isit the user facilities directory.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Jared Sagoff | EurekAlert!
Further information:
http://www.anl.gov

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>