Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry

03.06.2011
National Institute of Materials Science announced that a chemical wiring method has been developed for interconnection of each organic molecule by electrically conductive polymers.

National Institute of Materials Science (NIMS) announced on May 6, 2011 that a chemical wiring method is developed for interconnection of each organic molecule by electrically conductive polymers.

Details are published in Journal of the American Chemical Society, Article ASAP* by Researcher Yuji Okawa and his colleagues of NIMS International Center for Materials Nanoarchitectonics (MANA) with coauthors from organizations in Switzerland, Germany and United States.

Concerns of viable physical limitation of silicon based electronics have made single-molecule electronics to be a promising candidate for the future information systems. A challenge for its realization is connecting functional molecules to each other using conductive nanowires.

Researchers devised a method to create conductive nanowires at designated positions, and to ensure chemical bonding between the nanowires and functional molecules as follows. Functional molecules (phthalocyanine) are placed on a self-assembled monolayer of diacetylene compound. A probe tip of scanning tunneling microscope (STM) is positioned on the molecular row of the compound and stimulate the compound to form a conductive polydiacetylene nanowire by chain polymerization. Because of the high reactivity of the front edge of chain polymerization, the created polymer nanowire forms chemical bonding with an encountered molecular element, which will be named "chemical soldering".

First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. STM images demonstrated two conductive polymer nanowires connected to a single phthalocyanine molecule. A resonant tunneling diode is formed by this method as an example of single-molecule electronic devices.

Journal information

*Yuji Okawa, Swapan K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, and Masakazu Aono, "Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry", Journal of the American Chemical Society, Articles ASAP. Publication Date (Web): May 6, 2011 (Article) DOI: 10.1021/ja111673x

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>