Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry

03.06.2011
National Institute of Materials Science announced that a chemical wiring method has been developed for interconnection of each organic molecule by electrically conductive polymers.

National Institute of Materials Science (NIMS) announced on May 6, 2011 that a chemical wiring method is developed for interconnection of each organic molecule by electrically conductive polymers.

Details are published in Journal of the American Chemical Society, Article ASAP* by Researcher Yuji Okawa and his colleagues of NIMS International Center for Materials Nanoarchitectonics (MANA) with coauthors from organizations in Switzerland, Germany and United States.

Concerns of viable physical limitation of silicon based electronics have made single-molecule electronics to be a promising candidate for the future information systems. A challenge for its realization is connecting functional molecules to each other using conductive nanowires.

Researchers devised a method to create conductive nanowires at designated positions, and to ensure chemical bonding between the nanowires and functional molecules as follows. Functional molecules (phthalocyanine) are placed on a self-assembled monolayer of diacetylene compound. A probe tip of scanning tunneling microscope (STM) is positioned on the molecular row of the compound and stimulate the compound to form a conductive polydiacetylene nanowire by chain polymerization. Because of the high reactivity of the front edge of chain polymerization, the created polymer nanowire forms chemical bonding with an encountered molecular element, which will be named "chemical soldering".

First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. STM images demonstrated two conductive polymer nanowires connected to a single phthalocyanine molecule. A resonant tunneling diode is formed by this method as an example of single-molecule electronic devices.

Journal information

*Yuji Okawa, Swapan K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, and Masakazu Aono, "Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry", Journal of the American Chemical Society, Articles ASAP. Publication Date (Web): May 6, 2011 (Article) DOI: 10.1021/ja111673x

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>