Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry

National Institute of Materials Science announced that a chemical wiring method has been developed for interconnection of each organic molecule by electrically conductive polymers.

National Institute of Materials Science (NIMS) announced on May 6, 2011 that a chemical wiring method is developed for interconnection of each organic molecule by electrically conductive polymers.

Details are published in Journal of the American Chemical Society, Article ASAP* by Researcher Yuji Okawa and his colleagues of NIMS International Center for Materials Nanoarchitectonics (MANA) with coauthors from organizations in Switzerland, Germany and United States.

Concerns of viable physical limitation of silicon based electronics have made single-molecule electronics to be a promising candidate for the future information systems. A challenge for its realization is connecting functional molecules to each other using conductive nanowires.

Researchers devised a method to create conductive nanowires at designated positions, and to ensure chemical bonding between the nanowires and functional molecules as follows. Functional molecules (phthalocyanine) are placed on a self-assembled monolayer of diacetylene compound. A probe tip of scanning tunneling microscope (STM) is positioned on the molecular row of the compound and stimulate the compound to form a conductive polydiacetylene nanowire by chain polymerization. Because of the high reactivity of the front edge of chain polymerization, the created polymer nanowire forms chemical bonding with an encountered molecular element, which will be named "chemical soldering".

First-principles theoretical calculations are used to investigate the structures and electronic properties of the connection. STM images demonstrated two conductive polymer nanowires connected to a single phthalocyanine molecule. A resonant tunneling diode is formed by this method as an example of single-molecule electronic devices.

Journal information

*Yuji Okawa, Swapan K. Mandal, Chunping Hu, Yoshitaka Tateyama, Stefan Goedecker, Shigeru Tsukamoto, Tsuyoshi Hasegawa, James K. Gimzewski, and Masakazu Aono, "Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry", Journal of the American Chemical Society, Articles ASAP. Publication Date (Web): May 6, 2011 (Article) DOI: 10.1021/ja111673x

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>