Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell on a Chip Reveals Protein Behavior

19.03.2013
In the future, artificial cells may produce complex protein structures on demand

For years, scientists around the world have dreamed of building a complete, functional, artificial cell. Though this vision is still a distant blur on the horizon, many are making progress on various fronts. Prof. Roy Bar-Ziv and his research team in the Weizmann Institute’s Materials and Interfaces Department recently took a significant step in this direction when they created a two-dimensional, cell-like system on a glass chip.


Protein interaction on a chip: Red proteins concentrated more on the right, farther from the chip-bound genes, while green proteins are more highly concentrated on the left, closer to the genes that encode them


Illustrated biological chip: Genes (gray) are attached to the chip, along with antibodies (blue). The gene encoding the second protein is purple. RNA strands (red) are copied, and, depending on the information they encode, the proteins produced in the ribosomes (yellow) glow either green or red (green and purple cylinders)

This system, composed of some of the basic biological molecules found in cells – DNA, RNA, proteins – carried out one of the central functions of a living cell: gene expression, the process by which the information stored in the genes is translated into proteins. More than that, it enabled the scientists, led by research student Yael Heprotein yman, to obtain “snapshots” of this process in nanoscale resolution.

The system, consisting of glass chips that are only 8 nanometers thick, is based on an earlier one designed in Bar-Ziv’s lab by Dr. Shirley Daube and former student Dr. Amnon Buxboim. After being coated in a light-sensitive substance, the chips are irradiated with focused beams of ultraviolet light, which enables the biological molecules to bind to the substance in the irradiated areas.

In this way, the scientists could precisely place DNA molecules encoding a protein marked with a green fluorescent marker in one area of the chip and antibodies that “trap” the colored proteins in an abutting area. When they observed the chips under a fluorescence microscope, the area in which they had placed the antibodies turned a glowing bright green. This meant that the DNA instructions had been copied into RNA molecules, which were in turn translated into fluorescent green proteins. The green proteins were then ensnared by the antibodies.

Next, the scientists asked whether their cell-like system could reproduce complex structural assemblies of naturally-occurring proteins. This time, they attached a viral gene to the chips’ surface encoding a protein that can self-assemble into a nanotube. With the help of Dr. Sharon Wolf of the Electron Microscopy Unit, they observed a forest of minuscule tubes sprouting from the antibody area under an electron microscope.

The researchers then sought a way to produce and trap multiple proteins simultaneously by confining each protein in the area of its gene on the chip. On top of the chip to which the DNA encoding green proteins was bound, the scientists added a solution with a second gene encoding a red protein. The resulting red and green proteins competed for binding on the antibody traps, yielding a graded spatial separation in which the antibodies closest to the green genes had the highest concentration of green protein, with red concentrations rising farther afield. The results of this research recently appeared in Nature Nanotechnology.

Bar-Ziv: “We have shown that it is possible to build a protein 'production line' outside of the cell and use it to observe a spectrum of protein activities.” In the future, such a system may move from enabling the observation of proteins to providing the basis for techniques to create complex, active protein structures on demand.

Prof. Roy Bar Ziv’s research is supported by the Yeda-Sela Center for Basic Research; and the Carolito Stiftung.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Materials Sciences:

nachricht Cementless fly ash binder makes concrete 'green'
19.06.2018 | Rice University

nachricht Ground-breaking discoveries could create superior alloys with many applications
19.06.2018 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>