Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomically thick metal membranes

14.03.2014

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from Germany, Poland and Korea is published in Science on March 14, 2014.

Background


Two-dimensional membrane of a single atomic iron trapped in a graphene pore.

Picture: IFW Dresden

The success and promise of atomically thin carbon, in which carbon atoms are arranged in a honeycomb lattice, also known as graphene has triggered enormous enthusiasm for other two dimensional materials, for example, hexagonal boron nitride and molybdenum sulphide. These materials share a common structural aspect, namely, they are layered materials that one can think of as individual atomic planes that can be pulled away from their bulk 3D structure.

This is because the layers are held together through so called van der Waals interactions which are relatively weak forces as compared to other bonding configurations such as covalent bonds. Once isolated these atomically thin layers maintain mechanical integrity (i.e. they are stable) under ambient conditions. 

In the case of bulk metals, their crystalline structure is three dimensional, and is thus not a layered structure and moreover metallic atom bonds are relatively strong. These structural aspects of metals would seem to imply the existence of metal atoms as a freestanding 2D material is unlikely.

The formation of 2D atomically thin metallic layers over other surfaces has previously been demonstrated, however in this case the metal atoms interact with the underlying substrate. On the other hand, metallic bonding is non-directional and this fact along with the excellent plasticity of metals at the nanoscale suggest atomically thin 2D freestanding membranes comprised of metal atoms might just be possible.

Indeed, this is what an international group of researchers based in Germany, Poland and South Korea have now demonstrated is possible using iron atoms. Aside from the demonstration that metal atoms can form freestanding 2D membranes there is significant interest in the potential of such 2D metal materials as they are expected to have exotic properties.

Research

The international group of researchers from the Leibniz Institute Dresden (IFW), the Technische Universität Dresden, the Polish Academy of Sciences, Sungkyunkwan University and the Center for Integrated Nanostructure Physics, an Institute of Basic Science (Korea) used pores in mono-layer graphene to form free standing 2D iron (Fe) single atom thick membranes.

To achieve this the researchers took advantage of the manner in which Fe atoms move across the surface of graphene when irradiated by electrons in a transmission electron microscope (TEM). As these atoms move across the surface if they encounter an open graphene edge they tend to get trapped there.

The researchers were able to show, in situ, that large numbers of Fe atoms can get trapped in a pore and, moreover, configure themselves in an ordered manner to form a crystal with a square lattice. The spacing between atoms (lattice constant) was found on average to be 2.65±0.05Å which is significantly larger than that for the (200) Miller-index plane distance for the face centered cubic (FCC) phase or the (110) plane distance for BCC Fe. This result was surprising, because usually lattices shrink when they have a lower coordination number, a process known as surface contraction.

The researchers were able to show that the observed enlarged lattice spacing was due to strain which arises due to the lattice mismatch at the graphene edge and Fe membrane interface. Indeed, they could observe the lattice relax (contract) towards the center of the membranes. Supporting theoretical investigations by the researchers showed variations in the band structure of a 2D Fe membrane as compared to bulk Fe.

The differences were due to some electron orbital's lying in plane and others being out of a plane, an effect that does not occur in 3D bulk Fe. The theoretical investigations also confirmed a result shown by previous theoretical calculations that 2D Fe membranes should have a significantly enhanced magnetic moment.

Future Potential

The demonstration of 2D Fe membranes is exciting because it shows that freestanding 2D materials that are not obtained from layered bulk materials can be achieved and that such 2D materials can be stable under ambient conditions. The technique developed by the researchers could pave the way for new 2D structures to be formed.

These new 2D structures can be expected to have enhanced physical properties that could hold potential in a variety of applications. For example, the enhanced magnetic properties of atomically thin 2D Fe could make them attractive for magnetic recording media. They may also have interesting properties for photonic and electronic applications.

Publication: J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, M. H. Rümmeli, Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores, SCIENCE, 14 March 2014, Manuscript Number: science.1245273

Dr. Carola Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.ifw-dresden.de

More articles from Materials Sciences:

nachricht 3-D printing produces cartilage from strands of bioink
27.06.2016 | Penn State

nachricht Nanoscientists develop the 'ultimate discovery tool'
24.06.2016 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>