Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomically thick metal membranes

14.03.2014

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from Germany, Poland and Korea is published in Science on March 14, 2014.

Background


Two-dimensional membrane of a single atomic iron trapped in a graphene pore.

Picture: IFW Dresden

The success and promise of atomically thin carbon, in which carbon atoms are arranged in a honeycomb lattice, also known as graphene has triggered enormous enthusiasm for other two dimensional materials, for example, hexagonal boron nitride and molybdenum sulphide. These materials share a common structural aspect, namely, they are layered materials that one can think of as individual atomic planes that can be pulled away from their bulk 3D structure.

This is because the layers are held together through so called van der Waals interactions which are relatively weak forces as compared to other bonding configurations such as covalent bonds. Once isolated these atomically thin layers maintain mechanical integrity (i.e. they are stable) under ambient conditions. 

In the case of bulk metals, their crystalline structure is three dimensional, and is thus not a layered structure and moreover metallic atom bonds are relatively strong. These structural aspects of metals would seem to imply the existence of metal atoms as a freestanding 2D material is unlikely.

The formation of 2D atomically thin metallic layers over other surfaces has previously been demonstrated, however in this case the metal atoms interact with the underlying substrate. On the other hand, metallic bonding is non-directional and this fact along with the excellent plasticity of metals at the nanoscale suggest atomically thin 2D freestanding membranes comprised of metal atoms might just be possible.

Indeed, this is what an international group of researchers based in Germany, Poland and South Korea have now demonstrated is possible using iron atoms. Aside from the demonstration that metal atoms can form freestanding 2D membranes there is significant interest in the potential of such 2D metal materials as they are expected to have exotic properties.

Research

The international group of researchers from the Leibniz Institute Dresden (IFW), the Technische Universität Dresden, the Polish Academy of Sciences, Sungkyunkwan University and the Center for Integrated Nanostructure Physics, an Institute of Basic Science (Korea) used pores in mono-layer graphene to form free standing 2D iron (Fe) single atom thick membranes.

To achieve this the researchers took advantage of the manner in which Fe atoms move across the surface of graphene when irradiated by electrons in a transmission electron microscope (TEM). As these atoms move across the surface if they encounter an open graphene edge they tend to get trapped there.

The researchers were able to show, in situ, that large numbers of Fe atoms can get trapped in a pore and, moreover, configure themselves in an ordered manner to form a crystal with a square lattice. The spacing between atoms (lattice constant) was found on average to be 2.65±0.05Å which is significantly larger than that for the (200) Miller-index plane distance for the face centered cubic (FCC) phase or the (110) plane distance for BCC Fe. This result was surprising, because usually lattices shrink when they have a lower coordination number, a process known as surface contraction.

The researchers were able to show that the observed enlarged lattice spacing was due to strain which arises due to the lattice mismatch at the graphene edge and Fe membrane interface. Indeed, they could observe the lattice relax (contract) towards the center of the membranes. Supporting theoretical investigations by the researchers showed variations in the band structure of a 2D Fe membrane as compared to bulk Fe.

The differences were due to some electron orbital's lying in plane and others being out of a plane, an effect that does not occur in 3D bulk Fe. The theoretical investigations also confirmed a result shown by previous theoretical calculations that 2D Fe membranes should have a significantly enhanced magnetic moment.

Future Potential

The demonstration of 2D Fe membranes is exciting because it shows that freestanding 2D materials that are not obtained from layered bulk materials can be achieved and that such 2D materials can be stable under ambient conditions. The technique developed by the researchers could pave the way for new 2D structures to be formed.

These new 2D structures can be expected to have enhanced physical properties that could hold potential in a variety of applications. For example, the enhanced magnetic properties of atomically thin 2D Fe could make them attractive for magnetic recording media. They may also have interesting properties for photonic and electronic applications.

Publication: J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, M. H. Rümmeli, Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores, SCIENCE, 14 March 2014, Manuscript Number: science.1245273

Dr. Carola Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.ifw-dresden.de

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>