Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomically thick metal membranes

14.03.2014

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from Germany, Poland and Korea is published in Science on March 14, 2014.

Background


Two-dimensional membrane of a single atomic iron trapped in a graphene pore.

Picture: IFW Dresden

The success and promise of atomically thin carbon, in which carbon atoms are arranged in a honeycomb lattice, also known as graphene has triggered enormous enthusiasm for other two dimensional materials, for example, hexagonal boron nitride and molybdenum sulphide. These materials share a common structural aspect, namely, they are layered materials that one can think of as individual atomic planes that can be pulled away from their bulk 3D structure.

This is because the layers are held together through so called van der Waals interactions which are relatively weak forces as compared to other bonding configurations such as covalent bonds. Once isolated these atomically thin layers maintain mechanical integrity (i.e. they are stable) under ambient conditions. 

In the case of bulk metals, their crystalline structure is three dimensional, and is thus not a layered structure and moreover metallic atom bonds are relatively strong. These structural aspects of metals would seem to imply the existence of metal atoms as a freestanding 2D material is unlikely.

The formation of 2D atomically thin metallic layers over other surfaces has previously been demonstrated, however in this case the metal atoms interact with the underlying substrate. On the other hand, metallic bonding is non-directional and this fact along with the excellent plasticity of metals at the nanoscale suggest atomically thin 2D freestanding membranes comprised of metal atoms might just be possible.

Indeed, this is what an international group of researchers based in Germany, Poland and South Korea have now demonstrated is possible using iron atoms. Aside from the demonstration that metal atoms can form freestanding 2D membranes there is significant interest in the potential of such 2D metal materials as they are expected to have exotic properties.

Research

The international group of researchers from the Leibniz Institute Dresden (IFW), the Technische Universität Dresden, the Polish Academy of Sciences, Sungkyunkwan University and the Center for Integrated Nanostructure Physics, an Institute of Basic Science (Korea) used pores in mono-layer graphene to form free standing 2D iron (Fe) single atom thick membranes.

To achieve this the researchers took advantage of the manner in which Fe atoms move across the surface of graphene when irradiated by electrons in a transmission electron microscope (TEM). As these atoms move across the surface if they encounter an open graphene edge they tend to get trapped there.

The researchers were able to show, in situ, that large numbers of Fe atoms can get trapped in a pore and, moreover, configure themselves in an ordered manner to form a crystal with a square lattice. The spacing between atoms (lattice constant) was found on average to be 2.65±0.05Å which is significantly larger than that for the (200) Miller-index plane distance for the face centered cubic (FCC) phase or the (110) plane distance for BCC Fe. This result was surprising, because usually lattices shrink when they have a lower coordination number, a process known as surface contraction.

The researchers were able to show that the observed enlarged lattice spacing was due to strain which arises due to the lattice mismatch at the graphene edge and Fe membrane interface. Indeed, they could observe the lattice relax (contract) towards the center of the membranes. Supporting theoretical investigations by the researchers showed variations in the band structure of a 2D Fe membrane as compared to bulk Fe.

The differences were due to some electron orbital's lying in plane and others being out of a plane, an effect that does not occur in 3D bulk Fe. The theoretical investigations also confirmed a result shown by previous theoretical calculations that 2D Fe membranes should have a significantly enhanced magnetic moment.

Future Potential

The demonstration of 2D Fe membranes is exciting because it shows that freestanding 2D materials that are not obtained from layered bulk materials can be achieved and that such 2D materials can be stable under ambient conditions. The technique developed by the researchers could pave the way for new 2D structures to be formed.

These new 2D structures can be expected to have enhanced physical properties that could hold potential in a variety of applications. For example, the enhanced magnetic properties of atomically thin 2D Fe could make them attractive for magnetic recording media. They may also have interesting properties for photonic and electronic applications.

Publication: J. Zhao, Q. Deng, A. Bachmatiuk, G. Sandeep, A. Popov, J. Eckert, M. H. Rümmeli, Free-Standing Single-Atom-Thick Iron Membranes Suspended in Graphene Pores, SCIENCE, 14 March 2014, Manuscript Number: science.1245273

Dr. Carola Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.ifw-dresden.de

More articles from Materials Sciences:

nachricht Nanobionics Supercharge Photosynthesis
22.05.2015 | Department of Energy, Office of Science

nachricht Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies
22.05.2015 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>