Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Argonne scientists pioneer strategy for creating new materials


Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn’t always work as expected. To create a new strategy for designing materials, scientists at the Department of Energy’s Argonne National Laboratory combined two different approaches at two different facilities to synthesize new materials.

This new strategy gives faster feedback on what growth schemes are best, thus shortening the timeframe to manufacture a new, stable material for energy transport and conversion applications.

A recent article in Nature Materials describes how researchers used X-ray scattering during a process called molecular beam epitaxy (MBE) to observe the behavior of atoms as a type of material known as layered oxides were being formed. These observations were then used as data for computational predictions of new materials, leading to insights on how to best combine atoms to form new, stable structures.

“MBE is the construction of new materials one layer at a time—and each layer is one-atom thick. We used a new type of MBE system to observe what happens during the growth of oxide thin films. We found that the layers spontaneously rearrange to reach a lower energy, preferred configuration—but not necessarily the configuration we intended,” said John Freeland, the Argonne physicist who led the team. “Most scientists would not expect layers to move around like this, but this is important information to know when designing new materials.”

In experimenting with a class of oxides known as strontium titanates, the research team found that when they layered titanium on top of two layers of Strontium, the titanium layer switched places with the second strontium layer, thus becoming the center layer. When titanium was layered on multiple layers of strontium, titanium always switched places with the strontium layer directly underneath it (Figures 1 and 2).

Argonne chemist June Hyuk Lee lead the experimental development of the in situ oxide MBE, and Guangfu Luo from the University of Wisconsin-Madison developed the theoretical approach to unraveling the energetics that drive the layer rearrangements.

The research team included expertise from Argonne’s Advanced Photon Source (APS), Center for Nanoscale Materials (CNM), Chemical Sciences and Engineering, and Materials Science, and partners from Northwestern University, the University of Connecticut-Storrs and the University of Wisconsin-Madison, who wanted to understand the driving force behind the rearrangements. Using density functional theory (DFT) and computational resources at the CNM, they calculated and compared the energies of different layer sequences, using the data collected from the MBE system. They found that the actual layer sequences corresponded to the lowest energy configuration. Their computations also showed that layer exchange was not unique to strontium and titanium; in fact, it was expected for many different materials systems. With this understanding, scientists can control—on an atomic level—the growth of oxide thin-films.

“What we have here is a new strategy for materials design and synthesis,” said Argonne materials scientist and article co-author Dillon Fong. “Our combination of in situ X-ray scattering with computational theory can be extended to other layered materials and structures, even theoretical ones that haven’t been made yet because they are challenging to manufacture.”

This new strategy gives faster feedback on what growth strategies are best, thus shortening the timeframe to actual manufacture of a new, stable material.

In the future, Argonne wants to make oxide MBE a tool available to APS facility users for synthesis science. “The APS was instrumental in making our findings possible,” explained Freeland. “The X-rays gave us the quantitative information we needed to plug into the theoretical framework, which in turn will allow us—and other APS users--to make new materials more efficiently.”

Films were grown in the in situ X-ray chamber at Sector 33ID-E of the APS. Calculations were carried out on the Fusion Cluster of Argonne's Laboratory Computing Resource Center at the National Energy Research Scientific Computing Center (NERSC) and on Argonne's Carbon Cluster.

The paper, “Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy,” was published in Nature Materials.

This work was supported by the U.S. Department of Energy Office of Science, and partially supported by the University of Wisconsin Materials Research Science and Engineering Center.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the user facilities directory.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

For more information,

contact Jared Sagoff at (630) 252-5549 or

Tona Kunz | Eurek Alert!
Further information:

Further reports about: Computing Engineering Laboratory Photon Source X-ray energy titanium

More articles from Materials Sciences:

nachricht Spin glass physics with trapped ions
30.05.2016 | ICFO-The Institute of Photonic Sciences

nachricht 3-D model reveals how invisible waves move materials within aquatic ecosystems
30.05.2016 | University of Waterloo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>



Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

More VideoLinks >>>