Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Argonne scientists pioneer strategy for creating new materials


Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn’t always work as expected. To create a new strategy for designing materials, scientists at the Department of Energy’s Argonne National Laboratory combined two different approaches at two different facilities to synthesize new materials.

This new strategy gives faster feedback on what growth schemes are best, thus shortening the timeframe to manufacture a new, stable material for energy transport and conversion applications.

A recent article in Nature Materials describes how researchers used X-ray scattering during a process called molecular beam epitaxy (MBE) to observe the behavior of atoms as a type of material known as layered oxides were being formed. These observations were then used as data for computational predictions of new materials, leading to insights on how to best combine atoms to form new, stable structures.

“MBE is the construction of new materials one layer at a time—and each layer is one-atom thick. We used a new type of MBE system to observe what happens during the growth of oxide thin films. We found that the layers spontaneously rearrange to reach a lower energy, preferred configuration—but not necessarily the configuration we intended,” said John Freeland, the Argonne physicist who led the team. “Most scientists would not expect layers to move around like this, but this is important information to know when designing new materials.”

In experimenting with a class of oxides known as strontium titanates, the research team found that when they layered titanium on top of two layers of Strontium, the titanium layer switched places with the second strontium layer, thus becoming the center layer. When titanium was layered on multiple layers of strontium, titanium always switched places with the strontium layer directly underneath it (Figures 1 and 2).

Argonne chemist June Hyuk Lee lead the experimental development of the in situ oxide MBE, and Guangfu Luo from the University of Wisconsin-Madison developed the theoretical approach to unraveling the energetics that drive the layer rearrangements.

The research team included expertise from Argonne’s Advanced Photon Source (APS), Center for Nanoscale Materials (CNM), Chemical Sciences and Engineering, and Materials Science, and partners from Northwestern University, the University of Connecticut-Storrs and the University of Wisconsin-Madison, who wanted to understand the driving force behind the rearrangements. Using density functional theory (DFT) and computational resources at the CNM, they calculated and compared the energies of different layer sequences, using the data collected from the MBE system. They found that the actual layer sequences corresponded to the lowest energy configuration. Their computations also showed that layer exchange was not unique to strontium and titanium; in fact, it was expected for many different materials systems. With this understanding, scientists can control—on an atomic level—the growth of oxide thin-films.

“What we have here is a new strategy for materials design and synthesis,” said Argonne materials scientist and article co-author Dillon Fong. “Our combination of in situ X-ray scattering with computational theory can be extended to other layered materials and structures, even theoretical ones that haven’t been made yet because they are challenging to manufacture.”

This new strategy gives faster feedback on what growth strategies are best, thus shortening the timeframe to actual manufacture of a new, stable material.

In the future, Argonne wants to make oxide MBE a tool available to APS facility users for synthesis science. “The APS was instrumental in making our findings possible,” explained Freeland. “The X-rays gave us the quantitative information we needed to plug into the theoretical framework, which in turn will allow us—and other APS users--to make new materials more efficiently.”

Films were grown in the in situ X-ray chamber at Sector 33ID-E of the APS. Calculations were carried out on the Fusion Cluster of Argonne's Laboratory Computing Resource Center at the National Energy Research Scientific Computing Center (NERSC) and on Argonne's Carbon Cluster.

The paper, “Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy,” was published in Nature Materials.

This work was supported by the U.S. Department of Energy Office of Science, and partially supported by the University of Wisconsin Materials Research Science and Engineering Center.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the user facilities directory.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

For more information,

contact Jared Sagoff at (630) 252-5549 or

Tona Kunz | Eurek Alert!
Further information:

Further reports about: Computing Engineering Laboratory Photon Source X-ray energy titanium

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

More VideoLinks >>>