Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acrylic glass made of sugar - new enzyme could revolutionise production of plastics

13.11.2008
In future, polymethyl methacrylate (PMMA for short) – better known as acrylic glass – could be made from natural raw materials such as sugars, alcohols or fatty acids. PMMA is manufactured by polymerising methyl methacrylate (MMA).

In a bacterial strain, scientists at the University of Duisburg-Essen and the Helmholtz Centre for Environmental Research (UFZ) have found an enzyme which could be used for the biotechnological production of a precursor of MMA. Compared with the previous chemical production process, a biotechnological process is far more environmentally friendly.

Dr Thore Rohwerder has been nominated as one of three candidates for the European Evonik research award for his discovery. The competition is overseen by Dr Arend Oetker, president of the Stifterverband für die Deutsche Wissenschaft (Association of Donors to German Science). The aim of the award is to encourage young researchers to risk taking the step from the laboratory into business.

The topic of the 2008 Evonik research award is "White Biotechnology" (industrial biotechnology). The Science-to-Business Award worth EUR 100,000 was given to Dr. Paul Dalby from the University College London on November 12th in Berlin. Dalby’s method for combining enzymes and customizing them for new tasks convinced the international jury.

The newly enzyme discovered by Dr. Thore Rohwerder und Dr. Roland H. Müller, called 2-hydroxyisobutyryl-CoA mutase, makes it possible to turn a linear C4 carbon structure into a branched one. Compounds of this type are precursors of MMA. Parent compounds may of course include intermediate products from the petrochemical industry. The revolutionary aspect, however, is that this enzyme, integrated into metabolically appropriate microorganisms, can also transform sugars and other natural compounds into the products desired. Until now, the only way to produce this precursor – 2-hydroxyisobutyrate (2-HIBA) – was a purely chemical process based on petrochemical raw materials. The chemicals industry worldwide is searching for suitable biological processes, so that in future, renewable raw materials can also be used as a basis for MMA synthesis.

The mutase presented here provides the solution: an enzyme which shifts a functional group from one position to another within a molecule. While in a post-doc position at the UFZ’s Department of Environmental Microbiology, Dr Thore Rohwerder and his mentor Dr Roland H. Müller discovered the enzyme in a newly isolated bacterial strain they found while searching for bacteria to break down the pollutant MTBE (methyl tertiary butyl ether).

The reason attributed by the awards judges to the industrial importance of the discovery was that altogether, in the medium to long term, up to ten percent of today’s demand for MMA could feasibly be produced by biotechnological means. The world market is over 3 million tonnes / 4 billion euro. It will take about four years to establish the bacterial system in a functioning technological process (pilot plant). In about ten years, a technological process is then conceivable, with an annual turnover of 150 to 400 million euro.

PMMA is a synthetic plastic developed in 1928 and today produced in great quantities. PMMA is often known colloquially as acrylic glass, as it is mainly used as a shatterproof, lightweight alternative to glass – for example, in protective goggles or vehicle lights. PMMA has many applications, including prosthetics, paints and adhesives. It is also sold under the brand names "Plexiglas®" (Evonik) and "Altuglas" (Arkema). In the GDR, names used for this plastic included "O-Glas" (for "organic glass") or "Piacryl" (named after the old producer in the GDR, Piesteritz nitrogen works near Wittenberg).

The plastic is fragile, but very UV-resistant and thus weatherproof. Its high translucency and low weight mean that acrylic glass has to some extent replaced traditional glass. It was used for the roof of the Olympic stadium in Munich as far back as 1970. Experts predict that the demand for acrylic glass will grow even more in future – for example, for photovoltaic units.

Tilo Arnhold | alfa
Further information:
http://www.evonik.de/award
http://www.ufz.de/index.php?en=17387

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>