Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acrylic glass made of sugar - new enzyme could revolutionise production of plastics

13.11.2008
In future, polymethyl methacrylate (PMMA for short) – better known as acrylic glass – could be made from natural raw materials such as sugars, alcohols or fatty acids. PMMA is manufactured by polymerising methyl methacrylate (MMA).

In a bacterial strain, scientists at the University of Duisburg-Essen and the Helmholtz Centre for Environmental Research (UFZ) have found an enzyme which could be used for the biotechnological production of a precursor of MMA. Compared with the previous chemical production process, a biotechnological process is far more environmentally friendly.

Dr Thore Rohwerder has been nominated as one of three candidates for the European Evonik research award for his discovery. The competition is overseen by Dr Arend Oetker, president of the Stifterverband für die Deutsche Wissenschaft (Association of Donors to German Science). The aim of the award is to encourage young researchers to risk taking the step from the laboratory into business.

The topic of the 2008 Evonik research award is "White Biotechnology" (industrial biotechnology). The Science-to-Business Award worth EUR 100,000 was given to Dr. Paul Dalby from the University College London on November 12th in Berlin. Dalby’s method for combining enzymes and customizing them for new tasks convinced the international jury.

The newly enzyme discovered by Dr. Thore Rohwerder und Dr. Roland H. Müller, called 2-hydroxyisobutyryl-CoA mutase, makes it possible to turn a linear C4 carbon structure into a branched one. Compounds of this type are precursors of MMA. Parent compounds may of course include intermediate products from the petrochemical industry. The revolutionary aspect, however, is that this enzyme, integrated into metabolically appropriate microorganisms, can also transform sugars and other natural compounds into the products desired. Until now, the only way to produce this precursor – 2-hydroxyisobutyrate (2-HIBA) – was a purely chemical process based on petrochemical raw materials. The chemicals industry worldwide is searching for suitable biological processes, so that in future, renewable raw materials can also be used as a basis for MMA synthesis.

The mutase presented here provides the solution: an enzyme which shifts a functional group from one position to another within a molecule. While in a post-doc position at the UFZ’s Department of Environmental Microbiology, Dr Thore Rohwerder and his mentor Dr Roland H. Müller discovered the enzyme in a newly isolated bacterial strain they found while searching for bacteria to break down the pollutant MTBE (methyl tertiary butyl ether).

The reason attributed by the awards judges to the industrial importance of the discovery was that altogether, in the medium to long term, up to ten percent of today’s demand for MMA could feasibly be produced by biotechnological means. The world market is over 3 million tonnes / 4 billion euro. It will take about four years to establish the bacterial system in a functioning technological process (pilot plant). In about ten years, a technological process is then conceivable, with an annual turnover of 150 to 400 million euro.

PMMA is a synthetic plastic developed in 1928 and today produced in great quantities. PMMA is often known colloquially as acrylic glass, as it is mainly used as a shatterproof, lightweight alternative to glass – for example, in protective goggles or vehicle lights. PMMA has many applications, including prosthetics, paints and adhesives. It is also sold under the brand names "Plexiglas®" (Evonik) and "Altuglas" (Arkema). In the GDR, names used for this plastic included "O-Glas" (for "organic glass") or "Piacryl" (named after the old producer in the GDR, Piesteritz nitrogen works near Wittenberg).

The plastic is fragile, but very UV-resistant and thus weatherproof. Its high translucency and low weight mean that acrylic glass has to some extent replaced traditional glass. It was used for the roof of the Olympic stadium in Munich as far back as 1970. Experts predict that the demand for acrylic glass will grow even more in future – for example, for photovoltaic units.

Tilo Arnhold | alfa
Further information:
http://www.evonik.de/award
http://www.ufz.de/index.php?en=17387

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>