Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Misunderstanding Leads to Method for Making Nanowells

07.03.2011
A safe, simple, and cheap method of creating perfectly etched micron and smaller size wells in a variety of substrates has been developed by researchers in Penn State’s Department of Chemical Engineering. Similar patterned surfaces are currently made using complex and expensive photolithography methods and etch processes under clean room conditions and used in the fabrication of many optical, electrical, and mechanical devices.

The nanowell discovery was made in the labs of Darrell Velegol and Seong Kim by Velegol’s graduate student, Neetu Chaturvedi, and Kim’s graduate student, Erik Hsiao. An article detailing their research, “Maskless Fabrication of Nanowells Using Chemically Reactive Colloids,” appeared in the online edition of the journal Nano Letters in January 2011.

In collaboration with Chaturvedi, Hsiao was working on a project to adhere polystyrene on a silicon wafer to create nanostructures with known dimensions. When Hsiao asked her to heat one of his samples, a miscommunication led her to heat the polystyrene and silicon wafer at low temperature in water in the autoclave normally used for biological samples rather than in the vacuum furnace. When they looked at the samples under the atomic force microscope (AFM), they noticed holes had formed beneath the polystyrene particles.

Further examination under the scanning electron microscope (SEM) showed them perfectly etched, pyramidal shaped holes in the substrate below the places where the amidine-functionalized polystyrene latex colloid particles had adhered to the silicon dioxide on the surface of the silicon wafer.

“We saw three holes in the sample at the first AFM imaging and didn’t know what it meant since we expected pancake-like polymer patches on the sample,” said Hsiao. They took the sample to their advisers, who were both surprised by the etched wafer. By going over the steps the students had taken, the researchers realized that the wells were produced when the water hydrolized the amidine group in the particle, and through a series of chemical reactions, created a hydroxide ion that etched the well into the silicon wafer. The holes were uniform and their size and depth were totally dependent on the size of the original polystyrene particle, although the orientation of the silicon crystal affected the shape of the wells. In one orientation (100), the wells were perfect four-sided inverted pyramids. In the other orientation (111), the wells were perfect hexagons. The four researchers called them nanowells, because the bottom dimension of the wells was only a couple of nanometers across. They soon realized that they had discovered a new maskless method for creating structures in silicon without the elaborate steps normally required in the clean room.

“We’re delivering hydroxide ions directly to where we want to etch,” Velegol explained. “It’s much safer and cheaper than electron beam and X-ray lithography. It’s so safe that you could practically eat these particles without any harm.”

“We think this is a quite general discovery,” Kim added. “It’s a way to deliver chemistry locally rather than in bulk. Many metals, ceramics, and other materials can be etched with this technique.”

Another potential benefit of the discovery is the ability to create patterns on curved surfaces, something that is difficult to do with conventional photolithography. Since the particles are suspended in water, they can adhere to the surface of any shape and space themselves evenly over the surface. The researchers are just beginning to come up with intriguing ideas for how to use the simple technique.

Many breakthroughs come from accidents, Velegol remarked, because once something is known, people work on it very rapidly until they have filled in all the pieces and there is less to discover. Accidents are out of the pattern. “It’s one of those situations like Pasteur said where chance favors the prepared mind. We would never even have thought to try this kind of chemistry. But Neetu had been working with these colloids for several years, and Erik had experience with the AFM, so they were well prepared to take advantage of the accident,” Velegol concluded.

Neetu Chaturvedi, Ph.D., recently defended her thesis and is now a researcher with DuPont. Erik Hsiao is a graduate student in chemical engineering. Darrell Velegol is professor of chemical engineering and Seong Kim is associate professor of chemical engineering. Both are faculty in the Materials Research Institute where the AFM and SEM work was performed. Contact them by email at velegol@psu.edu and shkim@engr.psu.edu. This work was supported by the National Science Foundation (Grant Nos. IDR-1014673 and CMMI-1000021).

The Materials Research Institute facilitates and coordinates Penn State’s interdisciplinary research activity in materials science and engineering. The Millennium Science Complex, the university’s largest facility for scientific research, is scheduled to open in July 2011. It will bring together the Materials Research Institute and the Huck Institutes of the Life Sciences in the integration of the physical and life sciences with engineering.

| Newswise Science News
Further information:
http://www.psu.edu

Further reports about: Nanowells SEM chemical engineering chemical reaction silicon wafer

More articles from Materials Sciences:

nachricht Graphene assembled film shows higher thermal conductivity than graphite film
22.06.2018 | Chalmers University of Technology

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>