Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Misunderstanding Leads to Method for Making Nanowells

07.03.2011
A safe, simple, and cheap method of creating perfectly etched micron and smaller size wells in a variety of substrates has been developed by researchers in Penn State’s Department of Chemical Engineering. Similar patterned surfaces are currently made using complex and expensive photolithography methods and etch processes under clean room conditions and used in the fabrication of many optical, electrical, and mechanical devices.

The nanowell discovery was made in the labs of Darrell Velegol and Seong Kim by Velegol’s graduate student, Neetu Chaturvedi, and Kim’s graduate student, Erik Hsiao. An article detailing their research, “Maskless Fabrication of Nanowells Using Chemically Reactive Colloids,” appeared in the online edition of the journal Nano Letters in January 2011.

In collaboration with Chaturvedi, Hsiao was working on a project to adhere polystyrene on a silicon wafer to create nanostructures with known dimensions. When Hsiao asked her to heat one of his samples, a miscommunication led her to heat the polystyrene and silicon wafer at low temperature in water in the autoclave normally used for biological samples rather than in the vacuum furnace. When they looked at the samples under the atomic force microscope (AFM), they noticed holes had formed beneath the polystyrene particles.

Further examination under the scanning electron microscope (SEM) showed them perfectly etched, pyramidal shaped holes in the substrate below the places where the amidine-functionalized polystyrene latex colloid particles had adhered to the silicon dioxide on the surface of the silicon wafer.

“We saw three holes in the sample at the first AFM imaging and didn’t know what it meant since we expected pancake-like polymer patches on the sample,” said Hsiao. They took the sample to their advisers, who were both surprised by the etched wafer. By going over the steps the students had taken, the researchers realized that the wells were produced when the water hydrolized the amidine group in the particle, and through a series of chemical reactions, created a hydroxide ion that etched the well into the silicon wafer. The holes were uniform and their size and depth were totally dependent on the size of the original polystyrene particle, although the orientation of the silicon crystal affected the shape of the wells. In one orientation (100), the wells were perfect four-sided inverted pyramids. In the other orientation (111), the wells were perfect hexagons. The four researchers called them nanowells, because the bottom dimension of the wells was only a couple of nanometers across. They soon realized that they had discovered a new maskless method for creating structures in silicon without the elaborate steps normally required in the clean room.

“We’re delivering hydroxide ions directly to where we want to etch,” Velegol explained. “It’s much safer and cheaper than electron beam and X-ray lithography. It’s so safe that you could practically eat these particles without any harm.”

“We think this is a quite general discovery,” Kim added. “It’s a way to deliver chemistry locally rather than in bulk. Many metals, ceramics, and other materials can be etched with this technique.”

Another potential benefit of the discovery is the ability to create patterns on curved surfaces, something that is difficult to do with conventional photolithography. Since the particles are suspended in water, they can adhere to the surface of any shape and space themselves evenly over the surface. The researchers are just beginning to come up with intriguing ideas for how to use the simple technique.

Many breakthroughs come from accidents, Velegol remarked, because once something is known, people work on it very rapidly until they have filled in all the pieces and there is less to discover. Accidents are out of the pattern. “It’s one of those situations like Pasteur said where chance favors the prepared mind. We would never even have thought to try this kind of chemistry. But Neetu had been working with these colloids for several years, and Erik had experience with the AFM, so they were well prepared to take advantage of the accident,” Velegol concluded.

Neetu Chaturvedi, Ph.D., recently defended her thesis and is now a researcher with DuPont. Erik Hsiao is a graduate student in chemical engineering. Darrell Velegol is professor of chemical engineering and Seong Kim is associate professor of chemical engineering. Both are faculty in the Materials Research Institute where the AFM and SEM work was performed. Contact them by email at velegol@psu.edu and shkim@engr.psu.edu. This work was supported by the National Science Foundation (Grant Nos. IDR-1014673 and CMMI-1000021).

The Materials Research Institute facilitates and coordinates Penn State’s interdisciplinary research activity in materials science and engineering. The Millennium Science Complex, the university’s largest facility for scientific research, is scheduled to open in July 2011. It will bring together the Materials Research Institute and the Huck Institutes of the Life Sciences in the integration of the physical and life sciences with engineering.

| Newswise Science News
Further information:
http://www.psu.edu

Further reports about: Nanowells SEM chemical engineering chemical reaction silicon wafer

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>