Cell discovery opens new chapter in drug development

Cells 'talk' to each other through a complex process called 'signalling'. When these signals go wrong, it can lead to all kinds of diseases, including cancer, diabetes and arthritis, to name but a few.

Scientists have long been able to see how cells send and receive signals at their outer skins, or membranes, but much of what happens afterwards has not been fully understood. As a result, many drugs on the market work without scientists knowing precisely how or what consequences they have for cell function.

Researchers at The University of Manchester in England have now developed a technique that will allow scientists to understand how these signals pass from the cell membrane into the cell itself, triggering a complex set of biological processes that have never been fully understood.

The research, published in the prestigious journal Science Signaling, will spark intense interest among the global scientific community, as they will hopefully lead to better drug design and faster drug delivery times. In addition, the findings will also provide biologists with a completely new insight into how our bodies work.

“Cell signalling is a fundamental biological process that is essential for life and when it goes wrong, disease results,” said Professor Martin Humphries, lead researcher on the project and Dean of Manchester's Faculty of Life Sciences.

“Signals allow cells to 'taste' their environment in a similar fashion to how we taste food and drink. As an analogy, red wines have subtly different flavours, comprising a combination of hints of berries, oak, tobacco and liquorice. The same is true for cells that taste the thousands of molecules that make up their immediate environment.

“Our findings explain how cells might interpret these various flavours at a molecular level to generate an overall signal or taste. To do this, we have developed a technique that will allow scientists to examine how the receptors on the surface of cells pass information to the hundreds of proteins inside the cell that create the signal. Uniquely, our findings will allow scientists to look at all these hundreds of components at the same time.”

The team's findings will finally allow scientists to observe how drugs work at an intracellular level, which will allow them to fully understand how they interact with the hundreds of cell receptors at the same time and what side-effects they are likely to produce.

Professor Humphries added: “Our findings will be of great interest to scientists and pharmaceutical companies as they open up new avenues for drug development and testing.”

Media Contact

Aeron Haworth EurekAlert!

More Information:

http://www.manchester.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors