First ever multi-cellular model of rare disease developed at University of Alberta

Zellweger's syndrome is a form of peroxisome biogenesis disorder, a group of deadly genetic diseases that claim the lives of children usually before they reach their first birthday. Researchers have been stumped about how to make a multicellular model they can use to development treatments.

The chair of the Department of Cell Biology, Richard Rachubinksi, and his Ph.D student Fred Mast, with the help of Drosophila [fruit fly] expert Andrew Simmonds, have been successful in developing a model of Zellweger's syndrome. This syndrome is the most common type of peroxisome biogenesis disorder.

“Mating two parents that have the mutated gene gave us a mutant fly that mimicked the human phenotype,” said Rachubinski. The fruit fly is ideal for medical research because its development can be studied from fertilization through to adulthood, and the development is much more rapid than in mice or humans.

“The periods that you can allow for development are much shorter in flies so you can look at things much more quickly,” said Rachubinski. “You get two generations per month.”

It is also less expensive to use Drosophila. As the research group moves forward testing compounds that could be used as pharmaceuticals to treat Zellweger's syndrome, they only have to use minute amounts compared to what would be needed for other laboratory models. And it helps that part of the study included a comprehensive gene analysis that will help them monitor the efficacy of compounds and point to new gene targets for pharmaceuticals.

This is a major step forward and it has clinicians at Johns Hopkins and McGill universities excited. They have paired up with the U of A basic scientists and hope to take what the researchers learn in flies right to patients.

“We have a plan all the way to the patient,” said Rachubinski. “This really is what one calls translational research. It's going from basic molecular studies, to the hopeful development of compounds, to the application in patients.”

“We hope it will be a cycle, in that we feed to the clinicians information which they will then use to generate more questions,” said Simmonds. “We want them to then feed the questions right back for us to work it out.”

For Rachubinski, this major advance, which is published in Disease Models & Mechanisms, is a great accomplishment. He has been working to understand peroxisome biogenesis disorders for almost 30 years.

“It's what I've worked for all my life and I hope to see in the next few years that we can actually move it on even farther and look towards the treatment of these patients,” he said.

Media Contact

Quinn Phillips EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors