Meeting biofuel production targets could change agricultural landscape

An alternative, according to a study in ACS' journal Environmental Science & Technology, would be to convert 60 percent of existing rangeland to biofuels.

W. Kolby Smith and colleagues explain that the 2007 Energy Independence and Security Act (EISA) set a goal of increasing U.S. biofuel production from 40 to 136 billion gallons of ethanol per year by 2022. They point out, however, that gaps exist in the ability to establish realistic targets for biofuel production, which the law fills with assumptions about technological developments and the availability and productivity of farmland. In an effort to establish more accurate estimates, they used satellite data about climate, plant cover and usable land to determine how much biofuel the U.S. could produce.

The satellite analysis found that to meet the EISA goals under current technology, farmers would either need to plant biofuel crops on 80 percent of their farmed land or plant biofuel crops on 60 percent of the land currently used to raise livestock. The authors reported that both options would significantly reduce the amount of food U.S. farmers produce. They also noted that research shows that increased farming could lead to more polluted freshwater and accelerate global climate change.

The authors acknowledge funding from the Energy Biosciences Institute and the National Aeronautics and Space Administration.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact newsroom@acs.org.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors