'Magnetic tongue' ready to help produce tastier processed foods

It is a “magnetic tongue” — a method used to “taste” food and identify ingredients that people describe as sweet, bitter, sour, etc. A report on use of the method to taste canned tomatoes appears in ACS' Journal of Agricultural and Food Chemistry.

Antonio Randazzo, Anders Malmendal, Ettore Novellino and colleagues explain that sensing the odor and flavor of food is a very complex process. It depends not only on the combination of ingredients in the food, but also on the taster's emotional state. Trained taste testers eliminate some of the variation, but food processors need more objective ways to measure the sensory descriptor of their products.

That's where electronic sensing technologies, like E-noses, come into play. However, current instruments can only analyze certain food components and require very specific sample preparation. To overcome these shortcomings, Randazzo and Malmendal's team turned to nuclear magnetic resonance spectroscopy (NMR) to test its abilities as “a magnetic tongue.”

The researchers analyzed 18 canned tomato products from various markets with NMR and found that the instrument could estimate most of the tastes assessed by the human taste testers. But the NMR instrument went even farther.

By determining the chemical composition, it showed which compound is related to which sensory descriptor. The researchers say that the “magnetic tongue” has good potential as a rapid, sensitive and relatively inexpensive approach for food processing companies to use.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors