Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ECO-PESED - Efficient and codon optimized protein expression, secretion and detection system for the green microalga Chlamydomon

The wide use of recombinant polypeptides is limited by still insufficient means of production, namely, their expression in host cells. The most often used bacterial host cells generally have the considerable drawback that polypeptides of eukaryotic origin are not folded correctly and that undesirable posttranslational modifications may occur. One of the most severe drawbacks is that the target polypeptide is typically located in the cytoplasm of the host cells and must be isolated from said cytoplasm in a laborious, time-consuming and expensive downstream-processing.

In view of the above, an expression system is needed that is usable in an eukaryotic cell extensively autologous with respect to sugars, amino acids and that is extensively independent of growth factors. It has been shown that plant cells, in particular microalgae cells, can be used for the production of recombinant proteins and overcome most of the above problems. Microalga cultures are comparably easy to handle and, in principle, scalable to large production scales. Furthermore, microalgae merely require a slightly salty aqueous environment, CO2 and light, can be supplemented by simple carbon sources, or a combination of these strategies to grow rapidly and produce the recombinant protein of interest. Therefore, the cultivation of microalgae is relatively inexpensive. These cultures can be extensively free of sugars and amino acids. The use of solar energy to produce biomass and recombinant protein production is an attractive aspect of these cells in light of the goal of sustainability. Unfortunately, the efficient production of recombinant proteins in microalgae is hampered because of the tightly regulated gene expression, preference for certain nucleic acid codon usage, and bias to its own promoters. The present invention allows to overcome these problems with highly efficient production and direct secretion of target polypeptides into the medium and in addition enables simultaneous monitoring of the polypeptide production without disturbing the expression system. This system has in principle a large range of applications and may be used due to the safe organism for researchers, pharmaceutical targets and food and feed producers.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Dipl.-Ing. Alfred Schillert | TechnologieAllianz e.V.
Further information:

All articles from Technology Offerings >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>