Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Evolution of Cholera, Identify Strain Responsible for Early Pandemics That Killed Millions

09.01.2014
Working with a nearly 200-year-old sample of preserved intestine, researchers at McMaster University and the University of Sydney have traced the bacterium behind a global cholera pandemic that killed millions – a version of the same bug that continues to strike vulnerable populations in the world’s poorest regions.

Using sophisticated techniques, the team has mapped the entire genome of the elusive 19th century bacterium. The findings are significant because, until now, researchers had not identified the early strains of cholera, a water-borne pathogen. The discovery significantly improves understanding of the pathogen’s origin and creates hope for better treatment and possible prevention.


McMaster University

A preserved intestine from a male victim of cholera used to extract tiny DNA fragments.

Researchers have now confirmed the first of two types of cholera, known as classical, was likely responsible for five of the seven devastating outbreaks in the 1800s, all of which most likely originated in waters of the Bay of Bengal.

That strain of cholera had remained a mystery because researchers were unable to examine samples from early victims. The pathogen thrives in the intestines, never reaching teeth or bones, so remnants of its DNA do not exist in skeletal remains. Despite many known cholera burials, access to historical cholera DNA had seemed impossible since it can only be found in soft-tissue remains.

... more about:
»Cholera »DNA »DNA fragment »Evolution »pandemics

But graduate student Alison Devault and evolutionary geneticists Hendrik Poinar, Brian Golding and Eddie Holmes—working with a team of other scientists—learned that a remarkable collection of tissue specimens was housed at a medical history museum. The Mütter Museum was established by the College of Physicians of Philadelphia in 1858, after the city itself was devastated by cholera earlier in the century.

Researchers carefully sampled a preserved intestine from a male victim of the 1849 pandemic and extracted information from tiny DNA fragments to reconstruct the Vibrio cholera genome.

The results, currently published in The New England Journal of Medicine, could lead to a better understanding of cholera and its modern-day strain known as El Tor, which replaced the classical strain in the 1960s for unknown reasons and is responsible for recent epidemics, including the devastating post-earthquake outbreak in Haiti.

“Understanding the evolution of an infectious disease has tremendous potential for understanding its epidemiology, how it changes over time, and what events play a role in its jump into humans,” explains Poinar, associate professor and director of the McMaster Ancient DNA Centre and an investigator with the Michael G. DeGroote Institute of Infectious Disease Research, also at McMaster University.

“We need to understand the selective pressures on the pathogen which in turn is driving its evolution, its virulence and hopefully use that information to develop better treatments,” he says. Using a sophisticated technique to extract, purify and enrich fragments of the pathogen’s DNA, the team collected precious genomic data, which answered many unresolved questions.

The researchers identified “novel genomic islands”, or genome regions that don’t occur in current strains. In addition, a well-known genic region involved in toxicity of the pathogen (a sequence called “CTX”) occurs more times in the ancient strain than in its modern descendants.

This may mean that this strain was more virulent, say researchers, but further testing will be needed.

Regarding the origins, the team’s calculations show that the classical strain and El Tor co-existed in humans and estuaries for many centuries, potentially thousands of years prior to the 19th century pandemics, and emerged as a full-blown infection in humans in the early 1800’s.

The ancestor of both the classical and El Tor strain likely circulated together in the waters of the Bay of Bengal for several thousand years before emerging in humans during what is known as the first epidemiological transition, or a time of great agricultural revolution and human settlement.

The World Health Organization estimates there are three to five million new cholera cases every year. Of those, 100,000 to 120,000 people typically die from the disease. But with access to historical collections and samples, scientists hope to gain a better understanding of how pandemics arise, spread and ultimately how they might be better controlled or stopped.

“The genomes of ancestral pathogens that have descendants today reside in these archival medical collections all over the world,” says Poinar. “We have access to hundreds of thousands of ancient specimens, which hold tremendous potential to determine the origins of past epidemics.” Thus these collections represent a treasure trove and should be carefully preserved and maintained.

The research was funded by the Natural Sciences and Engineering Research Council, the Social Sciences and Humanities Research Council, an NHMRC Australia Fellowship and an Ontario Graduate Scholarship.

Attention Editors: A full suite of multimedia material, including high def footage, high res photos and graphics is available at: https://www.dropbox.com/sh/wbs6oh726zre5og/DJmZ_ykSzU

Michelle Donovan | Newswise
Further information:
http://www.mcmaster.ca

Further reports about: Cholera DNA DNA fragment Evolution pandemics

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>