Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT Arlington research may unlock enzyme’s role in disease

A UT Arlington chemist doing National Science Foundation-funded research on enzymes that regulate human biology has uncovered characteristics that could be used to identify predisposition to conditions such as heart disease, diabetic ulcers and some types of cancer.

Brad Pierce, an assistant professor of chemistry/biochemistry at The University of Texas at Arlington, recently led a team that examined an oxygen utilizing iron enzyme called cysteine dioxygenase or CDO, which is found in high levels within heart, liver, and brain tissues.

First and Second coordination spheres of the CDO active site.

Enzymes are proteins that act as catalysts to enable metabolic functions, but under some circumstances these oxygen-dependent enzymes can also produce highly toxic side products called reactive oxygen species or ROS.

For the first time, Pierce’s team found that mutations outside the CDO active site environment or “outer coordination sphere” have a profound influence on the release of ROS. Excess ROS has been linked to numerous age-onset human disease states.

“Most research in the past has focused on the active site inner coordination sphere of these enzymes, where the metal molecule is located,” said Pierce. “What we’re finding is that it’s really the second sphere that regulates the efficiency of the enzyme. In essence, these interactions hold everything together during catalysis. When this process breaks down, the enzyme ends up spitting out high levels of ROS and increasing the likelihood of disease.”

The study was published in December by the American Chemical Society journal Biochemistry. Pierce is corresponding author on the paper, with UT Arlington students Wei Li, Michael D. Pecore and Joshua K. Crowell as co-authors. Co-author Elizabeth J. Blaesi is a graduate research assistant at the University of Wisconsin.

Pierce believes the findings from the CDO enzyme could be applied to other oxygen-dependent enzymes, which make up about 20 percent of the enzymes in the human body.

“In principle, these findings could be extended to better understand how other enzymes within the class generate ROS and potentially be used to screen for genetic dispositions for ROS-related diseases,” he said.

Pierce’s research brings a new level of detail to enzyme study through the use of electron paramagnetic resonance or EPR, a technology similar to the magnetic resonance imaging or MRI used in the medical field. In fall 2012, the National Science Foundation awarded Pierce a three-year, $300,000 grant to study enzymes that are catalysts for the oxidation of sulfur-bearing molecules in the body.

“Dr. Pierce’s research is a good example of how basic science can set a path toward discoveries that affect human health. We look forward to his continued exploration of these findings,” said Pamela Jansma, dean of the UT Arlington College of Science.

The title of the Biochemistry paper is “Second-Sphere Interactions between the C93-Y157 Cross-Link and the Substrate-Bound Fe Site Influence the O2 Coupling Efficiency in Mouse Cysteine Dioxygenase.” It is available online here:

The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in The University of Texas System. Total research expenditures reached almost $78 million last year. Visit to learn more.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer.
Media Contact: Traci Peterson, Office:817-272-9208,

Traci Peterson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>