Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Tennessee professor discovers how microbes survive at bare minimum

Research finds archaea eats protein

Beneath the ocean floor is a desolate place with no oxygen and sunlight. Yet microbes have thrived in this environment for millions of years.

This is an image of archaea.
Credit: Richard Kevorkian, University of Tennessee

Scientists have puzzled over how these microbes survive, but today there are more answers.

A study led by Karen Lloyd, a University of Tennessee, Knoxville, assistant professor of microbiology, reveals that these microscopic life-forms called archaea slowly eat tiny bits of protein. The study was released today in Nature.

The finding has implications for understanding the bare minimum conditions needed to support life.

"Subseafloor microbes are some of the most common organisms on earth," said Lloyd. "There are more of them than there are stars or sand grains. If you go to a mud flat and stick your toes into the squishy mud, you're touching these archaea. Even though they've literally been right under our noses for all of human history, we've never known what they're doing down there."

Archaea are one of three life forms on earth, including bacteria and eukarya cells.

Scientists are interested in archaea's extreme way of life because it provides clues about the absolute minimum conditions required to sustain life as well as the global carbon cycle.

"Scientists had previously thought that proteins were only broken down in the sea by bacteria," said Lloyd. "But archaea have now turned out to be important new key organisms in protein degradation in the seabed."

Proteins make up a large part of the organic matter in the seabed, the world's largest deposit of organic carbon.

To reveal the cells' identities and way of life, Lloyd and her colleagues collected ocean mud containing the archaea cells from Aarhus Bay, Denmark. Then they pulled out four individual cells and sequenced their genomic DNA to discover the presence of the extracellular protein-degrading enzymes predicted in those genomes.

"We were able to go back to the mud and directly measure the activity of these predicted enzymes," said Andrew Steen, another UT researcher and coauthor of the study. "I was shocked at how high the activities were."

This novel method opens the door for new studies by microbiologists. Scientists have been unable to grow archaea in the laboratory, limiting their studies to less than one percent of microorganisms. This new method allows scientists to study microorganisms directly from nature, opening up the remaining 99 percent to research.

Lloyd collaborated with other researchers from UT, as well as, Aarhus University in Denmark, Bigelow Laboratory for Ocean Sciences in Maine, Ribocon GmbH in Germany, and the Max Planck Institute for Marine Biology in Germany.

Whitney Heins | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>