Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Test Predicts Level of Disease-Facilitating Enzyme

Predicting how atherosclerosis, osteoporosis or cancer will progress or respond to drugs in individual patients is difficult.

In a new study, researchers took another step toward that goal by developing a technique able to predict from a blood sample the amount of cathepsins -- protein-degrading enzymes known to accelerate these diseases -- that a specific person would produce.

This patient-specific information may be helpful in developing personalized approaches to treat these tissue-destructive diseases.

“We measured significant variability in the amount of cathepsins produced by blood samples we collected from healthy individuals, which may indicate that a one-size-fits-all approach of administering cathepsin inhibitors may not be the best strategy for all patients with these conditions,” said Manu Platt, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The study was published online on Oct. 19, 2012 in the journal Integrative Biology. This work was supported by the National Institutes of Health, Georgia Cancer Coalition, Atlanta Clinical and Translational Science Institute, and the Emory/Georgia Tech Regenerative Engineering and Medicine Center.

Platt and graduate student Keon-Young Park collected blood samples from 14 healthy individuals, removed white blood cells called monocytes from the samples and stimulated those cells with certain molecules so that they would become macrophages or osteoclasts in the laboratory. By doing this, the researchers recreated what happens in the body—monocytes receive these cues from damaged tissue, leave the blood, and become macrophages or osteoclasts, which are known to contribute to tissue changes that occur in atherosclerosis, cancer and osteoporosis.

Then the researchers developed a model that used patient-varying kinase signals collected from the macrophages or osteoclasts to predict patient-specific activity of four cathepsins: K, L, S and V.

“Kinases are enzymes that integrate stimuli from different soluble, cellular and physical cues to generate specific cellular responses,” explained Platt, who is also a Georgia Cancer Coalition Distinguished Cancer Scholar. “By using a systems biology approach to link cell differentiation cues and responses through integration of signals at the kinase level, we were able to mathematically predict relative amounts of cathepsin activity and distinguish which blood donors exhibited greater cathepsin activity compared to others.”

Predictability for all cathepsins ranged from 90 to 95 percent for both macrophages and osteoclasts, despite a range in the level of each cathepsin among the blood samples tested.

“We were pleased with the results because our model achieved very high predictability from a simple blood draw and overcame the challenge of incorporating the complex, unknown cues from individual patients’ unique genetic and biochemical backgrounds,” said Platt.

According to Platt, the next step will be to assess the model’s ability to predict cathepsin activity using blood samples from individuals with the diseases of interest: atherosclerosis, osteoporosis or cancer.

“Our ultimate goal is to create an assay that will inform a clinician whether an individual’s case of cancer or other tissue-destructive disease will be very aggressive from the moment that individual is diagnosed, which will enable the clinician to develop and begin the best personalized treatment plan immediately,” added Platt.

Weiwei A. Li, who received her bachelor’s degree from the Coulter Department in 2010, also contributed to this study.

Research reported in this publication was supported in part by the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) under award number UL1TR000454 and the Office of the Director of the NIH under award number 1DP2OD007433. The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NIH.

CITATION: Park, Keon-Young et al., “Patient specific proteolytic activity of monocyte-derived macrophages and osteoclasts predicted with temporal kinase activation states during differentiation,” Integrative Biology (2012):

Research News & Publications Office
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia USA 30332-0177
Media Relations Contact: John Toon (404-894-6986)(
Writer: Abby Robinson

John Toon | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>