Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST method evaluates response to oxidation in live cells

13.02.2014
Researchers at the National Institute of Standards and Technology (NIST) have developed a new method for accurately measuring a key process governing a wide variety of cellular functions that may become the basis for a "health checkup" for living cells.

The NIST technique measures changes in a living cell's internal redox (reduction-oxidation) potential, a chemistry concept that expresses the favorability of reactions in which molecules or atoms either gain or lose electrons.


NMR data showing the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) over time in yeast cells at rest (top) and under oxidative stress (bottom). The cells at rest have almost no GSSG (dark blue shades) but it spikes briefly when they are stressed, while GSH declines. This type of analysis may one day help to measure cell health.

Credit: Reipa/NIST

Redox reactions are important to cell chemistry because they regulate many genes and the proteins they produce. An accurate measure of redox potential can provide insight into how well these genes are working, and in turn, whether or not the activities they control—such as differentiation and growth—are functioning normally.

To assess this, scientists customarily measure the levels of both the reduced (electrons added) and oxidized (electrons lost) forms of glutathione, a peptide the cell uses as an antioxidant. Glutathione in cells is found predominately in the reduced state, known as GSH, but some gets converted to the oxidized form, known as GSSG. A high amount of GSSG indicates a cell has suffered oxidative stress, a process believed to contribute to cell aging, breakdown, malfunction (such as cancer) and eventual death.

Unfortunately, traditional methods of obtaining this data are akin to an autopsy. The only way to measure the relative amounts of GSH and GSSG within a cell has been to rupture its membrane—killing it—and then examine the released contents.

The NIST team developed a way to measure GSH and GSSG levels in living cells in real time using nuclear magnetic resonance (NMR)spectroscopy, a technique that images individual molecules similar to how doctors use magnetic resonance imaging (MRI) to noninvasively view organs. "NMR has been shown in recent years to be a powerful tool for studying metabolites as they operate in living cells, so we felt it could work well as a noninvasive way to do the same for GSH and GSSG," says NIST research chemist Vytas Reipa.

In their proof-of-concept experiment,* the NIST researchers grew a mutant strain of yeast cells that could not manufacture their own glutathione in a medium containing the peptide tagged with a nitrogen isotope. This ensured that the only glutathione available in the cells would be detectable using NMR during its conversion from GSH to GSSG.

GSH and GSSG levels were measured by NMR for both cells at rest and under oxidative stress, and then used to calculate the changing intracellular redox potentials over time. The results showed, for the first time ever, that redox potential can serve as an indicator of how cells perform in response to oxidation in real time.

"We know that when oxidation tips the balance toward too much GSSG, we get a redox potential shifted more to the positive than it should be," Reipa explains. "A healthy cell compensates by reversing the process and when that happens, the redox potential shifts back to its original value. A sick cell, on the other hand, does not compensate and the value stays positive. Therefore, an accurate in-cell measurement of redox potential could one day help us determine how well cells can recover from oxidative stress and, as a result, give us a picture of the cell's overall health."

Currently, the NIST researchers are exploring other NMR-detectable peptides involved in reduction and oxidation processes to conduct studies with mammalian cells.

The NMR spectroscopy in this experiment was conducted at NIST's Gaithersburg, Md., facility in collaboration with NIST scientists at the Hollings Marine Laboratory (HML) in Charleston, S.C., and the Institute for Bioscience and Biotechnology Research (IBBR) in Rockville, Md.

*S.Y. Rhieu, A.A. Urbas, D.W. Bearden, J.P. Marino, K.A. Lippa and V. Reipa. Probing the intracellular glutathione redox potential by in-cell NMR spectroscopy. Angewandte Chemie, 126: 457-460 (2014). DOI: http://dx.doi.org/10.1002/anie.201308004.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>