Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Loss of function of a single gene linked to diabetes in mice

Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were reported online in the journal Diabetes.

If a gene called MADD is not functioning properly, insulin is not released into the bloodstream to regulate blood sugar levels, says Bellur S. Prabhakar, professor and head of microbiology and immunology at UIC and lead author of the paper.

Type 2 diabetes affects roughly 8 percent of Americans and more than 366 million people worldwide. It can cause serious complications, including cardiovascular disease, kidney failure, loss of limbs and blindness.

In a healthy person, beta cells in the pancreas secrete the hormone insulin in response to increases in blood glucose after eating. Insulin allows glucose to enter cells where it can be used as energy, keeping glucose levels in the blood within a narrow range. People with type 2 diabetes don’t produce enough insulin or are resistant to its effects. They must closely monitor their blood glucose throughout the day and, when medication fails, inject insulin.

In previous work, Prabhakar isolated several genes from human beta cells, including MADD, which is also involved in certain cancers. Small genetic variations found among thousands of human subjects revealed that a mutation in MADD was strongly associated with type 2 diabetes in Europeans and Han Chinese.

People with this mutation had high blood glucose and problems of insulin secretion – the “hallmarks of type 2 diabetes,” Prabhakar said. But it was unclear how the mutation was causing the symptoms, or whether it caused them on its own or in concert with other genes associated with type 2 diabetes.

To study the role of MADD in diabetes, Prabhakar and his colleagues developed a mouse model in which the MADD gene was deleted from the insulin-producing beta cells. All such mice had elevated blood glucose levels, which the researchers found was due to insufficient release of insulin.

“We didn’t see any insulin resistance in their cells, but it was clear that the beta cells were not functioning properly,” Prabhakar said. Examination of the beta cells revealed that they were packed with insulin. “The cells were producing plenty of insulin, they just weren’t secreting it,” he said.

The finding shows that type 2 diabetes can be directly caused by the loss of a properly functioning MADD gene alone, Prabhakar said. “Without the gene, insulin can’t leave the beta cells, and blood glucose levels are chronically high.”

Prabhakar now hopes to investigate the effect of a drug that allows for the secretion of insulin in MADD-deficient beta cells.

“If this drug works to reverse the deficits associated with a defective MADD gene in the beta cells of our model mice, it may have potential for treating people with this mutation who have an insulin-secretion defect and/or type 2 diabetes,” he said.

Jose Oberholzer, chief of transplantation surgery, and Ajay V. Maker, assistant professor of surgery at the University of Illinois Hospital & Health Sciences System; Yong Wang, Ryan Carr, Samir Haddad, Ze Li, Lixia Qian, and Qian Wang of the UIC College of Medicine; and Liang-Cheng Li of Xiamen University are co-authors on the paper.

This research was supported by grant R01DK91526 from the National Institutes of Health.

Sharon Parmet | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>