Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of function of a single gene linked to diabetes in mice

06.01.2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were reported online in the journal Diabetes.

If a gene called MADD is not functioning properly, insulin is not released into the bloodstream to regulate blood sugar levels, says Bellur S. Prabhakar, professor and head of microbiology and immunology at UIC and lead author of the paper.

Type 2 diabetes affects roughly 8 percent of Americans and more than 366 million people worldwide. It can cause serious complications, including cardiovascular disease, kidney failure, loss of limbs and blindness.

In a healthy person, beta cells in the pancreas secrete the hormone insulin in response to increases in blood glucose after eating. Insulin allows glucose to enter cells where it can be used as energy, keeping glucose levels in the blood within a narrow range. People with type 2 diabetes don’t produce enough insulin or are resistant to its effects. They must closely monitor their blood glucose throughout the day and, when medication fails, inject insulin.

In previous work, Prabhakar isolated several genes from human beta cells, including MADD, which is also involved in certain cancers. Small genetic variations found among thousands of human subjects revealed that a mutation in MADD was strongly associated with type 2 diabetes in Europeans and Han Chinese.

People with this mutation had high blood glucose and problems of insulin secretion – the “hallmarks of type 2 diabetes,” Prabhakar said. But it was unclear how the mutation was causing the symptoms, or whether it caused them on its own or in concert with other genes associated with type 2 diabetes.

To study the role of MADD in diabetes, Prabhakar and his colleagues developed a mouse model in which the MADD gene was deleted from the insulin-producing beta cells. All such mice had elevated blood glucose levels, which the researchers found was due to insufficient release of insulin.

“We didn’t see any insulin resistance in their cells, but it was clear that the beta cells were not functioning properly,” Prabhakar said. Examination of the beta cells revealed that they were packed with insulin. “The cells were producing plenty of insulin, they just weren’t secreting it,” he said.

The finding shows that type 2 diabetes can be directly caused by the loss of a properly functioning MADD gene alone, Prabhakar said. “Without the gene, insulin can’t leave the beta cells, and blood glucose levels are chronically high.”

Prabhakar now hopes to investigate the effect of a drug that allows for the secretion of insulin in MADD-deficient beta cells.

“If this drug works to reverse the deficits associated with a defective MADD gene in the beta cells of our model mice, it may have potential for treating people with this mutation who have an insulin-secretion defect and/or type 2 diabetes,” he said.

Jose Oberholzer, chief of transplantation surgery, and Ajay V. Maker, assistant professor of surgery at the University of Illinois Hospital & Health Sciences System; Yong Wang, Ryan Carr, Samir Haddad, Ze Li, Lixia Qian, and Qian Wang of the UIC College of Medicine; and Liang-Cheng Li of Xiamen University are co-authors on the paper.

This research was supported by grant R01DK91526 from the National Institutes of Health.

Sharon Parmet | EurekAlert!
Further information:
http://news.uic.edu/loss-of-function-of-a-single-gene-linked-to-diabetes-in-mice

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>