Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the immune system

07.01.2013
Immune cells undergo complex processes during their development. If errors occur, the consequences for those who are affected can be fatal. Scientists from the University of Würzburg have now uncovered new details of what happens. These could be a target for new therapies.
As recently as a few decades ago, the following response was feared: following an organ transplant, the patient’s immune system recognizes the transplanted organ as “foreign” and therefore attacks and rejects it. It was not until the discovery, nearly 30 years ago, that the mycotoxin cyclosporin A can prevent the rejection of a transplanted organ that this response lost its capacity to terrify.

“In T cells, which are important cells in the immune system, cyclosporin A inhibits the activation of a group of transcription factors called NFAT factors,” explains Professor Edgar Serfling, a researcher at the University of Würzburg’s Institute of Pathology. At the time, this finding was tantamount to a “revolution in transplantation medicine”. “Thousands of patients owe their lives to cyclosporin A and the inhibition of NFAT factors,” says Serfling.

Now Serfling, his Research Associate Amiya K. Patra, and other scientists at the University of Würzburg have uncovered new details of the interaction between transcription factors and immune cells. Their work has just been published online in the journal Nature Immunology.

The development of T cells

To enable T cells to recognize transplanted organs or pathogenic viruses and bacteria as foreign material, they first have to be “educated”. This education takes place in the thymus – hence the name T cells. There, the immigrant progenitor cells of the cells later known as thymocytes are subjected to various selection processes in which NFAT factors also play an important role. “If errors occur in these processes, this often leads to autoimmune diseases, such as multiple sclerosis, psoriasis, and rheumatism,” explains Serfling. In multiple sclerosis, for example, autoreactive T cells in the brain attack the myelin sheaths of nerve cells, causing the fatal symptoms of this disease.

In the thymus, thymocyte progenitors develop special receptors on their surface where the body’s own transmitter interleukin 7 (IL-7) can dock. After it has docked, IL-7 transmits signals that activate or deactivate numerous genes in the cells. The progenitor cells subsequently divide and evolve into mature thymocytes.
New insights into the development process

As Amiya Patra has now revealed, NFAT factors also play a significant part in these processes: “If a specific NFAT factor is deactivated in mice, the thymocytes remain in their earliest stage of development and no thymus is created,” explains Serfling. However, if the early steps of thymocyte development that are controlled by IL-7 proceed without disruption, the cell soon forms other receptors that are important to its development and the IL-7 receptor disappears.

Though it is not just the absence of the NFAT factor that disrupts cell development; an excess also messes up the process: the development of thymocytes stops, but at a later stage in this case, and again with fatal consequences: “Specific progenitor receptors are created in an uncontrolled manner, with the result that the person affected develops leukemia, and NFAT factors play a critical role in this too,” explains Serfling.

Approach for new therapies

Through their work the Würzburg team has demonstrated that NFAT factors are critically involved not only in the recognition of the body’s own tissue and in immune responses, but also in the “education” of T cells in the thymus. They therefore represent a target structure that will play a key role in therapies for autoimmune diseases and leukemia in the future.

“An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development”. Amiya K Patra, Andris Avots, René P Zahedi, Thomas Schüler, Albert Sickmann, Ursula Bommhardt & Edgar Serfling; Nature Immunology, doi:10.1038/ni.2507

Contact

Prof. Dr. Edgar Serfling, T: +49 (0)931 31-81207,
e-mail: serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>