Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The first virtual reality technology to let you see, hear, smell, taste and touch

The first virtual reality headset that can stimulate all five senses will be unveiled at a major science event in London on March 4th.

What was it really like to live in Ancient Egypt? What did the streets there actually look, sound and smell like? For decades, Virtual Reality has held out the hope that, one day, we might be able visit all kinds of places and periods as 'virtual' tourists.

To date, though, Virtual Reality devices have not been able to stimulate simultaneously all five senses with a high degree of realism.

But with funding from the Engineering and Physical Sciences Research Council (EPSRC), scientists from the Universities of York and Warwick believe they have been able to pinpoint the necessary expertise to make this possible, in a project called 'Towards Real Virtuality'.

'Real Virtuality' is a term coined by the project team to highlight their aim of providing a 'real' experience in which all senses are stimulated in such a way that the user has a fully immersive perceptual experience, during which s/he cannot tell whether or not it is real.

Teams at York and Warwick now aim to link up with experts at the Universities of Bangor, Bradford and Brighton to develop the 'Virtual Cocoon' – a new Real Virtuality device that can stimulate all five senses much more realistically than any other current or prospective device.

For the user the 'Virtual Cocoon' will consist of a headset incorporating specially developed electronics and computing capabilities. It could help unlock the full potential benefits of Real Virtuality in fields such as education, business and environmental protection.

A mock-up of the Virtual Cocoon will be on display at 'Pioneers 09', an EPSRC showcase event to be held at London's Olympia Conference Centre on Wednesday 4th March.

Professor David Howard of the University of York, lead scientist on the initiative, says: "Virtual Reality projects have typically only focused on one or two of the five senses – usually sight and hearing. We're not aware of any other research group anywhere else in the world doing what we plan to do.

"Smell will be generated electronically via a new technique being pioneered by Alan Chalmers and his team at Warwick which will deliver a pre-determined smell recipe on-demand. Taste and smell are closely linked but we intend to provide a texture sensation relating to something being in the mouth. Tactile devices will provide touch."

A key objective will be to optimise the way all five senses interact, as in real life. The team also aim to make the Virtual Cocoon much lighter, more comfortable and less expensive than existing devices, as a result of the improved computing and electronics they develop.

There has been considerable public debate on health & safety as well as on ethical issues surrounding Real Virtuality, since this kind of technology fundamentally involves immersing users in virtual environments that separate them from the real world.

Professor David Howard says: "In addition to the technical development of the Virtual Cocoon, we aim to closely evaluate the full, far-reaching economic and other implications of more widespread application of Real Virtuality technologies for society as a whole."

Dan Stern | EurekAlert!
Further information:

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>