Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex Carbon Picture Clearer

12.12.2007
Study shows that more plant litter resulting from higher CO2 could boost the amount of carbon released into the atmosphere

A new study looks at a poorly understood process with potentially critical consequences for climate change. Emma Sayer, postdoctoral fellow at the Smithsonian Tropical Research Institute, Jennifer Powers, an assistant professor in the University of Minnesota’s Department of Ecology, Evolution and Behavior, and Edmund Tanner, researcher at Cambridge University, published the findings of their long-term study on the effects of increased plant litter on soil carbon and nutrient cycling in the December 12 edition of PLoS ONE.

As CO2 concentrations in the atmosphere continue to rise, increases in plant productivity – and litterfall – are likely. The study considers the impact of an increase in organic matter on the ground on processes belowground. Results suggest that the balance of carbon stored in the soils (thought to be a long-term sink for carbon) can be changed with the addition of fresh leaf litter. The capacity of soils to store carbon might then diminish if global environmental changes such as CO2 increases and nitrogen deposition boost plant productivity.

Over the course of the 5-year experiment, the fluxes of carbon dioxide from the soil surface to the atmosphere in a tropical forest in Panama were measured. These CO2 fluxes (also called soil respiration) come from two main sources: the respiration of roots and the decomposition of litter and soil organic matter by fungi, bacteria, and other microorganisms.

“To our surprise, the litter addition plots showed substantially higher amounts of soil respiration than would be predicted by the increase in leaf litter,” said Powers. “We suspect that this extra CO2 in the litter addition plots was coming from the decomposition of ‘old soil organic matter’, which was stimulated by adding large quantities of fresh leaf litter.” This effect, the stimulation of the decomposition of old, ‘stored’ organic carbon by the addition of fresh organic matter is known as the ‘priming effect.’ “There are important links between above-and belowground processes and we need to understand these links in order to assess the impact of global change and human disturbance on natural ecosystems” said Sayer.

The study has implications for policy makers considering new approaches to capping carbon emissions such as carbon sequestration. “Our results suggest unanticipated feedbacks to the carbon cycle that must be taken into account when estimating the potential for carbon sequestration in the soil,” Powers said.

Emma Sayer of the Smithsonian Tropical Research Institute and Cambridge University is the lead author of the study. Edmund Tanner, also of Cambridge University, and Jennifer Powers of the University of Minnesota are co-authors.

Citation: Sayer EJ, Powers JS, Tanner EVJ (2007) Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere. PLoS ONE 2(12): e1299. doi:10.1371/journal.pone.0001299

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0001299
http://www.plos.org

More articles from Ecology, The Environment and Conservation:

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>