Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A low-carbon Finland is a great challenge, but an achievable one

VTT specialists have assessed Finland's chances of achieving the 80% greenhouse gas emission reduction targets. The EU's goal for 2050 is to reduce emissions by at least 80% from the level of 1990.

The goal is a tough one for Finland, but possible to achieve as long as all sectors that produce or consume energy take part. On top of this, all greenhouse gas emissions must be reduced.

Finland requires new technological solutions for industrial activity, for the transport of people, goods and services, and for housing and working methods. If clean forms of energy and the efficiency of energy use are substantially developed and widely adopted, Finland could become a seller of emission allowances and clean energy.

Finland benefits from the availability of substantial reserves of renewable energy and a diversified energy structure.

In 2050, 85% of Finnish electricity could be produced free of carbon dioxide. This requires diverse energy production and the widespread adoption of carbon capture and storage (CCS) technologies, in connection with both fossil fuel and biomass use.

If the industry significantly improves its energy efficiency and adopts CCS, 80% of the energy consumed by industry will be carbon-neutral. Resource efficiency must be improved and the use of recycled materials increased.

A 70% level of carbon-neutral energy in transport is possible to achieve by 2050. In low-carbon transport, there is great demand for biofuels; these could constitute up to 40% of the total energy consumed by transport sector.

Of the final energy used by buildings, 85% would be carbon-neutral in 2050. Some buildings could even produce energy locally. The potential for improving the energy efficiency of buildings is great even with current technologies, but sufficiently rapid implementation poses a challenge.

Low Carbon Finland 2050 is a self-financed strategic research project of VTT that supports VTT's own long-term operational planning. The project combines technological expertise from various areas of competence within VTT, from low-carbon and smart energy systems to foresight and energy system modelling.

VTT's Low Carbon 2050 research project's final report online:

Kai Sipilä | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>