Study shows gene positions may aid cancer diagnosis

Individual genes preferentially localize to specific points within the nucleus. The reasons for this aren't known, but the positions can be reshuffled during differentiation. Meaburn et al. wondered whether genes might also rearrange during carcinogenesis, when large-scale changes in nuclear morphology occur. The researchers previously identified four genes that shift their location in a 3D culture model of early breast cancer, and now turned their attention to human tissue.

The team analyzed 20 genes and found that most were positioned uniformly in healthy breast tissue from numerous individuals. Eight of these genes consistently relocated in the nuclei of invasive breast cancer cells, including HES5, which had an altered localization in all tumors examined. The researchers were able to distinguish between normal and diseased tissue on the sole basis of these genes' nuclear localization with success rates similar to current clinical tests.

The next step, says lead author Karen Meaburn, will be to repeat the study on a larger number of samples. HES5 is unlikely to be repositioned in all of these, so the authors hope to identify a set of genes that, in combination, can accurately diagnose breast cancer. The approach may be useful for prognosis, too—in vitro studies suggest that gene movements are an early event in cancer development, so gene positions might provide an indication of the cancer's future progress.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Meaburn, K.J., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200909127.

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rupress.org

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Looking inside battery cells

The power of combining different views. Lithium-Ion batteries presently are the ubiquitous source of electrical energy in mobile devices, and the key technology for e-mobility and energy storage. Massive interdisciplinary…

New snail-inspired robot can climb walls

A robot, designed to mimic the motion of a snail, has been developed by researchers at the University of Bristol. Adding to the increasing innovative new ways robots can navigate,…

New technique improves finishing time for 3D printed machine parts

North Carolina State University researchers have demonstrated a technique that allows people who manufacture metal machine parts with 3D printing technologies to conduct automated quality control of manufactured parts during…

Partners & Sponsors