Scientists identify brain regions where nicotine affects attention, other cognitive skills

Nicotine administration in humans is known to sharpen attention and to slightly enhance memory. Now scientists, using functional magnetic resonance imaging (MRI), have identified those areas of the brain where nicotine exerts its effects on cognitive skills.

Their findings suggest that nicotine improves attention in smokers by enhancing activation in the posterior cortical and subcortical regions of the brain–areas traditionally associated with visual attention, arousal, and motor activation. This study provides the first evidence that nicotine-induced enhancement of parietal cortex activation is associated with improved attention.

The investigators used functional MRI to visualize nicotine’s effects on the brain during a rapid visual information-processing (RVIP) task — a task that requires sustained attention and working memory. Fifteen smokers with and without a 21- mg transdermal nicotine patch performed the RVIP task while undergoing MRI screening. The subjects performed the RVIP task twice–once with a placebo patch and once with a nicotine patch–and were scanned during each session. They smoked their last cigarette 15 minutes before performing the RVIP task.

When smokers were given a placebo patch for the first scan and a nicotine patch for the second scan, there was improvement in task performance between the two scans. When smokers were given a nicotine patch for the first scan and a placebo patch for the second scan, there was no difference in their performance, suggesting that nicotine and practice interact.

Study findings also suggest that nicotine helps focus attention on task demands by shifting cognitive resources from less “used” parts of the brain to regions required for task performance.

What it means: This study adds to the understanding of the effects of nicotine on the brain. Such understanding helps explain both nicotine’s addictive properties and potential therapeutic applications.

Dr. Elliot A. Stein, Neuroimaging Research Branch, Intramural Research Program, NIDA, and colleagues from the Medical College of Wisconsin and the Institute of Psychiatry in London published the study in the October 24, 2002 issue of Neuron.

Contact: Michelle Person
e-mail: mperson@mail.nih.gov

Media Contact

Michelle Person EurekAlert!

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors