New system of automatic control capable of governing satellite telescopes

A team of Control Engineering researchers at the Public University of Navarra has successfully finalised their work on QFT Multivariable Robust Control of Darwin-type Satellites with large flexible structures, undertaken for the European Space Agency (ESA).

The scientists have designed a new automatic control system capable of governing the Darwin Project satellite telescopes.

The Darwin Project

The European Space Agency is currently developing what is known as the Darwin Project involving the launching into space in 2014 of six satellite telescopes flying in formation. This mission will enable the study of the Universe with hitherto unprecedented precision and depth, improving on current telescopes by several orders of magnitude. Amongst the immediate aims is the search for new planets outside the Solar System and which have possibilities of life on them.

The work developed by the team of researchers at the Public University of Navarra on the design of new control systems for governing satellites in formation attracted the attention of the ESA.

The problem was one of enormous complexity, the remit of the researchers from Navarre requiring the design of a new automatic control system capable of governing satellites in a high-precision manner. In fact, it had to be undertaken with a precision in the order of micro-meters in the orbital three-dimensional position and of milliarcseconds (a 3.6 millionth part of a degree) in each one of the three angles of orientation in space. Moreover, the vibrations introduced by their flexible structures, wind perturbations and gravitational phenomena had to be rejected simultaneously. These specifications were imposed by the enormous precision required of the on-board telescopes whose mission is to probe the furthest points of the Universe with great exactitude.

In developing the research project, two control systems, previously designed for the ESA by an international consortium, were employed. This part of the work involved comparing these with the latest theories on QFT multivariable robust control developed by the research team.

The final results of the project have proved totally satisfactory. The viability of the new QFT developments has been confirmed, improving greatly on the dynamic behaviour of the satellite achieved by previous control theories regarding the twelve evaluation criteria studied.

Media Contact

Irati Kortabitarte alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors