Real-life „quantum molycircuits“ using exotic nanotubes

Low temperature setup during initial assembly.
Dr. Andreas K. Hüttel, Univ. Regensburg

Molybdenum disulfide MoS2 is a groundbreaking material for electronics applications.

As a two-dimensional layer similar to graphene, it is an excellent semiconductor, and can even become intrinsically superconducting under the right conditions. It’s not particularly surprising that science fiction authors have already been speculating about „molycircs“, fictional computer circuits built from MoS2, for years – and that physicists and engineers are directing huge research efforts at this material.

At University of Regensburg, we have many years of expertise with diverse quantum materials – in particular also with carbon nanotubes, tube-like macromolecules made from carbon atoms alone.

Electron microscope image of as-grown MoS2 nanomaterial, with flakes, ribbons, and nanotubes.
(c) Dr. Luka Pirker, IJS Ljubljana

„It was an obvious next step to now focus on MoS2 and its fascinating properties,“ so Dr. Andreas K. Hüttel, head of the research group „Nanotube Electronics and Nanomechanics“ in Regensburg. In cooperation with Prof. Dr. Maja Remškar, Jožef Stefan Institut Ljubljana, a specialist in the crystalline growth of molybdenum disulfide nanomaterials, his research group started working on quantum devices based on MoS2 nanotubes.

„It turns out that MoS2 makes quantum confinement, i.e., discrete electronic states as you would need for qubits and quantum computers, very difficult to reach with flat flakes on a chip. That is exactly why we are interested in these exotic nanotubes. The tubes can be grown clean and straight, with diameters down to 20nm – and will then automatically give you the small structure sizes that you need.“

The initial challenge was to make good metallic contacts. Useful metals with low contact resistances tend to react with the MoS2 surface and destroy its crystal structure, a difficulty that affects also „flat“ MoS2 and is one of the main reasons why not many complex circuits exist there yet. For nanotubes, with small surface areas, this difficulty used to be even more pressing. „Now finally we obtain devices which remain electrically transparent even in the low temperature range typically needed for quantum computation, and which leave the molybdenum disulfide intact,“ so Dr. Hüttel.

And that’s not all – the structure sizes immediately came into play. „So far, for practical reasons we used rather large nanotubes and nanoribbons. Still, we can show that in our low temperature setup, at temperatures below 0.1K as are used in many quantum computing approaches, current passes through discrete quantum states in our chip – and that is a big step towards controllable charge, spin, or even valley qubits in MoS2.“

Wissenschaftliche Ansprechpartner:

PD Dr. Andreas K. Hüttel
Institute for Experimental and Applied Physics
University of Regensburg
93040 Regensburg, Germany;
E-Mail: andreas.huettel@ur.de

Originalpublikation:

“Non-Destructive Low-Temperature Contacts to MoS2 Nanoribbon and Nanotube Quantum Dots”
Robin T. K. Schock, Jonathan Neuwald, Wolfgang Möckel, Matthias Kronseder, Luka Pirker, Maja Remškar, and Andreas K. Hüttel
Advanced Materials, doi:10.1002/adma.202209333 (2023)
https://onlinelibrary.wiley.com/doi/10.1002/adma.202209333

http://www.uni-regensburg.de/

Media Contact

Bastian Schmidt Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Looking inside battery cells

The power of combining different views. Lithium-Ion batteries presently are the ubiquitous source of electrical energy in mobile devices, and the key technology for e-mobility and energy storage. Massive interdisciplinary…

New snail-inspired robot can climb walls

A robot, designed to mimic the motion of a snail, has been developed by researchers at the University of Bristol. Adding to the increasing innovative new ways robots can navigate,…

New technique improves finishing time for 3D printed machine parts

North Carolina State University researchers have demonstrated a technique that allows people who manufacture metal machine parts with 3D printing technologies to conduct automated quality control of manufactured parts during…

Partners & Sponsors