NASA'S Chandra Catches Our Galaxy's Giant Black Hole Rejecting Food

X-ray: NASA/UMass/D. Wang et al., IR: NASA/STScI<br><br>One of the biggest observing campaigns ever performed by Chandra has provided new understanding into why gas near the giant black hole at the center of the Milky Way is extraordinarily faint in X-rays. The large image contains X-rays from Chandra (blue) and infrared emission from the Hubble (red and yellow). The inset shows a close-up of Sgr A* in X-rays only, covering a region half a light year wide. The diffuse X-ray emission is from hot gas captured by the black hole and being pulled inwards. The new results indicate that less than 1% of the material that is initially within the black hole’s gravitational grasp reaches the event horizon, or, point of no return.<br>

New Chandra images of Sagittarius A* (Sgr A*), which is located about 26,000 light-years from Earth, indicate that less than 1 percent of the gas initially within Sgr A*'s gravitational grasp ever reaches the point of no return, also called the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten, leading to feeble X-ray emission.

These new findings are the result of one of the longest observation campaigns ever performed with Chandra. The spacecraft collected five weeks' worth of data on Sgr A* in 2012. The researchers used this observation period to capture unusually detailed and sensitive X-ray images and energy signatures of super-heated gas swirling around Sgr A*, whose mass is about 4 million times that of the sun.

“We think most large galaxies have a supermassive black hole at their center, but they are too far away for us to study how matter flows near it,” said Q. Daniel Wang of the University of Massachusetts at Amherst, who led a study published Thursday in the journal Science. “Sgr A* is one of very few black holes close enough for us to actually witness this process.”

The researchers found that the Chandra data from Sgr A* did not support theoretical models in which the X-rays are emitted from a concentration of low-mass stars around the black hole. Instead, the X-ray data show the gas near the black hole likely originates from winds produced by a disk-shaped distribution of young massive stars.

“This new Chandra image is one of the coolest I’ve ever seen,” said co-author Sera Markoff of the University of Amsterdam in the Netherlands. “We're watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon.”

To plunge over the event horizon, material captured by a black hole must lose heat and momentum. The ejection of matter allows this to occur.

“Most of the gas must be thrown out so that a small amount can reach the black hole”, said co-author Feng Yuan of Shanghai Astronomical Observatory in China. “Contrary to what some people think, black holes do not actually devour everything that’s pulled towards them. Sgr A* is apparently finding much of its food hard to swallow.”

The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. The gluttonous black holes that power quasars and produce huge amounts of radiation have gas reservoirs much cooler and denser than that of Sgr A*.

The event horizon of Sgr A* casts a shadow against the glowing matter surrounding the black hole. This research could aid efforts using radio telescopes to observe and understand the shadow. It also will be useful for understanding the effect orbiting stars and gas clouds may have on matter flowing toward and away from the black hole.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Media Contact

Megan Watzke Newswise

Weitere Informationen:

http://www.cfa.harvard.edu

Alle Nachrichten aus der Kategorie: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Recording thousands of nerve cell impulses at high resolution

For over 15 years, ETH Professor Andreas Hierlemann and his group have been developing microelectrode-array chips that can be used to precisely excite nerve cells in cell cultures and to…

Fine-tuning stem cell metabolism prevents hair loss

A team of researchers from Cologne and Helsinki has discovered a mechanism that prevents hair loss: hair follicle stem cells, essential for hair to regrow, can prolong their life by…

Understanding ghost particle interactions

Scientists often refer to the neutrino as the “ghost particle.” Neutrinos were one of the most abundant particles at the origin of the universe and remain so today. Fusion reactions in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close