EU project on development of high-performance photonic processors gets started
A consortium led by physicist Wolfram Pernice from the University of Münster is receiving almost six million euros for four years from the European Commission for the “PHOENICS” project as part of the “FET Proactive” funding line (Horizon 2020). The group is researching fast and energy-efficient optical computer architectures. The project is intended to give a major boost to the development of new computing resources.
Artificial intelligence (AI) is seen as a key technology with fields of application in a wide variety of areas in society. However, researching, developing and, in particular, using AI systems presents enormous challenges for the computing power and storage capacity needed to process large data volumes. These are generated for example in internet applications such as the Internet of Things and broadband services such as HD video on demand and social media. Traditional electronic hardware is no longer able to meet this challenge.
A new research alliance headed by Dr. Wolfram Pernice, a professor at the Institute of Physics at the University of Münster, is developing fast, energy-efficient optical hardware alternatives. The alliance is now to receive almost six million euros for this research, over four years, from the European Commission, as part of the FET Proactive (Horizon 2020) funding line. The research teams involved include those from the University of Exeter (UK) and École polytechnique fédérale de Lausanne (EPFL, Switzerland).
“Our modern electronic technologies are fast approaching their limit, from a physics point of view,” says Wolfram Pernice. “We need completely new methods for processing the enormous data volumes which are necessary for AI applications.”
More computing power and energy efficiency
The PHOENICS project (the acronym stands for “Photonic enabled petascale in-memory computing with femtojoule energy consumption”) aims to give a boost to the development of new computing resources. The researchers involved plan to create so-called photonic neuromorphic processors with unprecedented computing power and energy efficiency. In this case, “neuromorphic” means that the processors take inspiration from the human brain and that the information is processed and stored in one and the same place. In the case of traditional computers, the computing and data storage units are separate from each other. “Photonic” means that data are transported by means of light instead of electrons (as in traditional computers).
In the project, the PHOENICS consortium plans to use new types of materials to create the photonic neuromorphic processors. Another aim is to develop new methods of significantly increasing computing power.
The project is based on previous work done by Wolfram Pernice’s group. A few weeks ago, for example, the team published a study in “Nature” in which it presented a hardware accelerator for so-called matrix multiplications. These multipliers handle the main processing load within neuromorphic networks. The researchers had combined the photonic structures with phase change materials (PCMs) to create very fast and energy-efficient photonic processors. PCMs are normally used in optical data storage with DVDs or Blu-Ray discs. In the processor which the team described, this enables the matrix elements to be stored and preserved without any energy input being needed. The light source which the physicists used was a chip-based frequency comb. Such a light source provides different optical wavelengths which, independently of one another, are processed in the same system. This enables parallel data processing to be carried out.
Project title:
Photonic enabled petascale in-memory computing with femtojoule energy consumption (PHOENICS)
Institutes involved:
University of Münster (Germany), University of Exeter (UK), École polytechnique fédérale de Lausanne (EPFL, Switzerland), Nanoscribe GmbH (Germany), University of Oxford (UK), Fraunhofer Gesellschaft, Heinrich Hertz Institute (Germany), University of Ghent (Belgium), IBM Research GmbH (Switzerland), MicroR Systems Sarl (Switzerland)
EU Commission’s “FET Proactive” funding line
FET Proactive provides funding – thematically focused – for revolutionary, multidisciplinary technological research as a response to social and industrial challenges. The aim is to mature novel research themes in technology and to open up and develop the research landscapes necessary for this. The idea is to enable ambitious topics to be included when the relevant research communities are structured and set up – as well as when industrial research agendas are developed. FET Proactive is part of the EU’s “Horizon 2020” Framework Programme for Research and Innovation.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Wolfram Pernice
Mail: wolfram.pernice@uni-muenster.de
Phone: +49 251 83 63957
Weitere Informationen:
https://www.uni-muenster.de/Physik.PI/Pernice/ Working group “Responsive Nanosystems” at the University of Münster
https://www.uni-muenster.de/forschung/en/profil/schwerpunkt/nanowissenschaften.h… Research focus “Nanosciences” at the University of Münster
Media Contact
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
The last missing piece of silicon photonics
International research team presents first electrically pumped continuous-wave semiconductor laser suitable for seamless silicon integration. Scientists from Forschungszentrum Jülich, FZJ, the University of Stuttgart, and the Leibniz Institute for High…
Space-time crystals, an important step toward new optical materials
KIT scientists design tailored materials for optical information processing. Photonic space-time crystals are materials that could increase the performance and efficiency of wireless communication or laser technologies. They feature a…
Quasiparticle loss in extreme quantum materials
A new study by Rice University physicist Qimiao Si unravels the enigmatic behaviors of quantum critical metals — materials that defy conventional physics at low temperatures. Published in Nature Physics…