Nine Teams Collaborate to Operate Multiple Biomedical Robots from Numerous Locations

In a 24-hour period, each participating group connected over the Internet and controlled robots at different locations. The tests demonstrated how a wide variety of robot and controller designs can seamlessly interoperate, allowing researchers to work together easily and more efficiently.

In addition, the demonstration evaluated the feasibility of robotic manipulation from multiple sites, and was conducted to measure time and performance for evaluating laparoscopic surgical skills.

The new protocol was cooperatively developed by the University of Washington and SRI International, to standardize the way remotely operated robots are managed over the Internet.

“Although many telemanipulation systems have common features, there is currently no accepted protocol for connecting these systems,” said SRI’s Tom Low. “We hope this new protocol serves as a starting point for the discussion and development of a robust and practical Internet-type standard that supports the interoperability of future robotic systems.”

The protocol will allow engineers and designers that usually develop technologies independently to work collaboratively, determine which designs work best, encourage widespread adoption of the new communications protocol, and help robotics research to evolve more rapidly. Early adoption of this protocol internationally will encourage robotic systems to be developed with interoperability in mind, and avoid future incompatibilities.

“We're very pleased with the success of the event in which almost all of the possible connections between operator stations and remote robots were successful. We were particularly excited that novel elements such as a simulated robot and an exoskeleton controller worked smoothly with the other remote manipulation systems,” said UW professor of electrical engineering Blake Hannaford.

The demonstration included the following organizations:

• SRI International, Menlo Park, Calif., USA
• University of Washington Biorobotics Lab (BRL), Seattle, Washington, USA
• University of California at Santa Cruz (UCSC), Bionics Lab, Santa Cruz, Calif., USA
• iMedSim, Interactive Medical Simulation Laboratory, Rensselaer Polytechnic Institute, Troy, New York, USA
• Korea University of Technology (KUT) BioRobotics Lab, Cheonan, South Chungcheong, South Korea
• Imperial College London (ICL), London, England
• Johns Hopkins University (JHU), Baltimore, Maryland, USA
• Technische Universität München (TUM), Munich, Germany
• Tokyo Institute of Technology (TOK), Tokyo, Japan
For more information regarding availability of the Interoperable Telesurgical Protocol, please visit: http://brl.ee.washington.edu/Research_Active/Interoperability/

index.php/Main_Page

Media Contact

Hannah Hickey Newswise Science News

More Information:

http://www.uw.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors