Nanoantennas directing a bright future
Titanium oxides found to significantly increase efficiency and photoluminescence.
White LEDs may soon be dethroned as the world’s go-to light source by an alternative with a much better sense of direction.
As a next-generation optical control technology, a photonic crystal or nanoantenna is a two-dimensional structure in which nano-sized particles are arranged periodically on a substrate. Upon irradiation, the combination of a nanoantennawith a phosphor plate achieves an ideal mix of blue and yellow light.
White LEDs have already been improved upon in the form of white laser diodes, or LDs, which consist of yellow phosphors and blue LDs. While the blue LDs are highly directional, the yellow phosphors radiate in all directions, resulting in an undesired mixing of colors.
To address this issue, researchers have developed phosphor plates combined with nanoantennas using metallic aluminum, enabling increased photoluminescence. Aluminum nanoparticles effectively scatter light and improve light intensity and directionality; however, aluminum also absorbs light, reducing the output. This is a major bottleneck, especially in high-intensity lighting applications.
Now, a team of researchers at Kyoto University has achieved a ten-fold enhancement of forward-directed photoluminescence by replacing aluminum with a better material.
“It turns out that titanium dioxide is a better choice for its high refractive index and low-light absorption,” says lead author Shunsuke Murai.
Although the light-scattering intensity of titanium oxide initially appeared inferior to metallic aluminum, the team used computer simulations to devise the optimal nanoantenna design.
“The new nanoantenna phosphors are advantageous for intensely bright yet energy-saving solid-state lighting because they can suppress temperature rise when irradiated,” explains Murai.
“During the process of finding the optimal dimensions, we were surprised to discover that the thinnest phosphors gave the brightest photoluminescence, demonstrating how to increase the forward radiation intensity and overall performance.”
The paper “Photoluminescence Engineering with nanoantenna phosphors” appeared on 21 December 2022 in Journal of Materials Chemistry C, with doi: 10.1039/d2tc03076d
About Kyoto University
Kyoto University is one of Japan and Asia’s premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, facilities, and offices around Japan and the world. For more information, please see: http://www.kyoto-u.ac.jp/en
Journal: Journal of Materials Chemistry C
DOI: 10.1039/d2tc03076d
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Photoluminescence Engineering with nanoantenna phosphors
Article Publication Date: 21-Dec-2022
COI Statement: The authors declare no conflict of interest.
Media Contact
Jake G. Tobiyama
Kyoto University
tobiyama.gakuji.6y@kyoto-u.ac.jp
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Milestone 10-GeV experiment shines light on laser-plasma interactions
With dual lasers and an advanced gas injector system, researchers at the Berkeley Lab Laser Accelerator Center accelerated a high-quality beam of electrons to 10 billion electronvolts in just 30…
Universal barcodes unlock fast-paced small molecule synthesis
The development of molecules to study and treat disease is becoming increasingly burdened by the time and specificity required to analyze the vast amounts of data generated by synthesizing large…
Minuscule robots for targeted drug delivery
In the future, delivering therapeutic drugs exactly where they are needed within the body could be the task of miniature robots. Not little metal humanoid or even bio-mimicking robots; think…