How do atoms vibrate in graphene nanostructures?

Schematic representation of local lattice vibrations in graphene excited by a wavefront of transmitted fast electrons. Credit:© Ryosuke Senga, AIST

In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons – the vibration of atoms in solids – influence the materials' properties.

Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.

This is a breakthrough in the analysis of nanoscale functional materials and devices. With this pilot experiment using graphene nanostructures these researchers have shown the uniqueness of their approach, which will be published in the latest issue of Nature.

Important thermal, mechanical, optoelectronic and transport characteristics of materials are ruled by phonons: the propagating atomic vibrational waves. It is then inferable that the determination of such extended atomic vibrations is crucial for the optimization of nanoelectronic devices.

The current available techniques use optical methods as well as inelastic electron-, x-ray- and neutron scattering. Despite its scientific importance in the last decade, none of these methods has been able to determine all phonons of a freestanding monolayer of two dimensional (2D) materials such as graphene and their local variations within a graphene nanoribbon, which are in turn used as active elements in nano- and optoelectronics.

The new limits of nanospectroscopy

An international research team of leading experts in electron spectroscopy led by Thomas Pichler at the University of Vienna, theoretical spectroscopy led by Francesco Mauri at La Sapienza University in Rome and electron microscopy led by Kazu Suenaga at the AIST Tsukuba in Japan, together with the Japanese company JEOL have presented an original method applying it to graphene nanostructures as model: “high resolution electron spectroscopy inside an electron microscope with enough sensitivity to measure even an atomic monolayer”.

In this way they could for the first time determine all vibrational modes of freestanding graphene as well as the local extension of different vibrational modes in a graphene nanoribbon. This new method, which they called “large q mapping” opens entirely new possibilities to determine the spatial and momentum extension of phonons in all nanostructured as well as two dimensional advanced materials.

These experiments push the limits of nanospectroscopy approaching the limits of Heisenbergs uncertainty principle and demonstrates new possibilities to study local vibration modes at the nanometer scale down to individual monolayers.

New electron nanospectrometer as “table top” synchrotron

“The direct experimental proof of the full spatial and momentum resolved mapping of local vibrations of all materials including even monolayer 2D materials and nanoribbons will enable us to fully disentangle different vibration modes and their momentum transfers at non-perfect structures such as edges or defects, which are extremely important to understand and optimize the local properties of a material”, explains one of the leading authors, Ryosuke Senga.

This study of “High q-Mapping Of Vibrations” in the electron microscope opens a new pathway of nanospectroscopy of all materials combining spatial and momentum resolved measurements. This has been the biggest challenge regarding the combination of microscopy and spectroscopy, since the spatial and momentum resolutions are compensated due to the limit of Heisenbergs uncertainty principle.

“We believe that our methodology will boost vast research in material science and will push high resolution electron spectroscopy in electron microscopy to the next level, to be envisaged as a true table top synchrotron”, says Thomas Pichler from the University of Vienna.

###

The work was supported by FWF, the EU and JSPS.

Publication in “Nature“:

“Position and momentum mapping of vibrations in graphene nanostructures”, Ryosuke Senga, Kazu Suenaga, Paolo Barone, Shigeyuki Morishita, Francesco Mauri, Thomas Pichler Nature, 2019 DOI: 10.1038/s41586-019-1477-8

Media Contact

Thomas Pichler
thomas.pichler@univie.ac.at
43-664-602-775-1466

 @univienna

http://www.univie.ac.at/en/

Media Contact

Thomas Pichler EurekAlert!

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close