Electrical engineers take major step toward photonic circuits
The invention of fibre optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we'd only previously dreamed of.
Now, electrical engineering researchers at the University of Alberta in Edmonton, Alberta, Canada are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.
This could result in radical increases in computing speeds and reduced energy use by electronic devices.
“We're already transmitting data from continent to continent using fibre optics, but the killer application is using this inside chips for interconnects—that is the Holy Grail,” says Zubin Jacob, an electrical engineering professor leading the research. “What we've done is come up with a fundamentally new way of confining light to the nano scale.”
At present, the diameter of fibre optic cables is limited to about 1/1000th of a millimetre. Cables designed by graduate student Saman Jahani and Jacob are 10 times smaller—small enough to replace copper wiring still used on computer chips. (Put into perspective, a dime is about 1 mm thick.)
Jahani and Jacob have invented a new, non-metallic metamaterial that enables them to “compress” and contain light waves in smaller cables without creating heat, slowing the signal or losing data. Their findings will be published in Optica (Aug. 20), The Optical Society's (OSA) new high-impact photonics journal. The article is available online.
The team's research is funded by the Natural Sciences and Engineering Research Council of Canada and the Helmholtz-Alberta Initiative.
For further information and to arrange interviews contact:
Richard Cairney
Communications Officer
University of Alberta Faculty of Engineering
780.492.4514
780.886.9278 (mobile)
richard.cairney@ualberta.ca
Media Contact
More Information:
http://www.ualberta.caAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Iron-Nickel-Zirconium Alloy Trigger a New Superconductor Zirconide
Student project uncovers superconductivity in polycrystalline iron nickel zirconide Zirconide: A New Transition Metal Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered a new superconducting material. They combined…
Heart of the Matter: Effective Anti-Obesity Strategies to Protect Cardiovascular Health
People with pockets of fat hidden inside their muscles are at a higher risk of dying or being hospitalised from a heart attack or heart failure, regardless of their body…
CO2 and Global Warming: How Soils and Plants Challenge Future Droughts
What will the future of our soils – and thus also the availability of water – look like under the influence of imminent climatic changes? An international study led by…