Virus 'barcodes' offer rapid detection of mutated strains

Currently the team is barcoding different strains of influenza virus and human respiratory syncytial virus (HRSV) – a virus associated with the onset of asthma in young children.

“Diseases such as flu infect and hijack our cells, turning them into virus producing factories,” says Dr Hiscox. “The infection causes the balance of proteins in a cell to change – some proteins are overproduced and others suppressed. Which proteins are affected and by how much varies depending on the type of virus, allowing us to identify a unique barcode of disease for each.”

The research, published today (14 May) in Proteomics, investigates changes in lung cells infected with swine flu from the 2009 outbreak compared with seasonal flu. The team used a labelling technique called SILAC to measure and compare thousands of different proteins in a sample.

This technique was used alongside mass spectrometry to identify the proteins most affected by viral infection and used these as molecular signatures to provide the 'barcode' of disease. The paper reports how several processes in the cell were affected by the virus, with most changes seen in proteins involved in cell replication.

“Swine flu affects the lungs in a similar way to seasonal flu and this was reflected in the barcodes we found for each,” explains Dr Barr. “Using this test might have been a way to identify how lethal the 2009 swine flu pandemic was going to be, lessening worldwide panic.

“Our next step is to test more lethal strains of flu, such as bird flu, to see how the barcodes differ. Flu virus frequently mutates, resulting in new strains which may be life-threatening and become pandemic. If we can test new strains using our method, we can determine their potential impact on health by comparing their barcode of disease to those of viruses already studied.”

The group from Leeds has already barcoded two types of HRSV which can cause severe respiratory disease in young children. Co-author Professor Miles Carroll of HPA Porton says: “We have focused our work on common respiratory viruses, such as flu and HRSV, but this method could be applied to a wide variety of viruses, including tropical diseases that are prone to sudden outbreaks and can be lethal.”

The research was funded by the National Institute for Health Research (NIHR), the Biotechnology and Biological Sciences Research Council (BBSRC) and the Medical Research Council (MRC).

Media Contact

Dr Julian Hiscox EurekAlert!

More Information:

http://www.leeds.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors