UA Researcher and Colleagues Discover the Birthplace of the Chili Pepper

Plenty of other world cuisines rely on it too, from China to India to Thailand. But Latin America, researchers have confirmed, is where it started. 

In a study of global significance, researchers have figured out where the first domesticated chili pepper crop was farmed. University of Arizona ethnobiologist and agroecologist Gary Nabhan and other researchers in the U.S., France and Kenya have determined that the plant was first cultivated in central-east Mexico, likely in the Valley of Tehuacán. 

The team's evidence indicates that the first cultivators of the chili pepper inhabited the area about 6,500 years ago. They were speakers of the Oto-Manguean language stock – an ethnic Mexican Indian language that makes up 174 different dialects.

The team's paper, “Multiple Lines of evidence for the Origin of Q:1 Domesticated Chili Pepper, Capsicum annuum, in Mexico,” appears in the April 29 issue of the Proceedings of the National Academy of Sciences.

The article is part of a special series of research papers PNAS just published on different aspects of domestication, including plant and animal domestication.

Led by University of California, Davis, plant scientist Paul Gepts, the international team determined that the crop's region of origin extended from the area that is now southern Puebla and northern Oaxaca to southeastern Veracruz, and was further south than previously thought.

“Identifying the origin of the chili pepper is not just an academic exercise,” said Gepts, lead author of another paper PNAS released in the series. “By tracing back the ancestry of any domesticated plant, we can better understand the genetic evolution of that species.”

Nabhan, who holds the Kellogg Endowed Chair in Sustainable Food Systems and is a researcher at the UA Southwest Center, noted that this new knowledge “better equips us to develop sound genetic conservation programs.” 

For the current study, the team employed a novel and innovative approach, using multiple lines of evidence to pinpoint where humans first cultivated the chili pepper. The team used two traditional investigative approaches, relying on archaeological and genetic data. 

The team's scientific methods and findings have important implications for understanding nutrition-related diseases, the use of crops for health-related benefits and crop production and resiliency into the future.

“Chilies are one of the most important spices in the world, and are an important part of our cultural legacy,” Nabhan said.

“We are helping scientists all around the world to understand the ecological, cultural and historical relationships of something that affects anyone that uses chilies.”

MEDIA CONTACTS:

Gary Nabhan

UA Southwest Center

520-621-2484

gpnabhan@email.arizona.edu

Paul Gepts

University of California, Davis

Department of Plant Sciences

530-752-7743

plgepts@ucdavis.edu

Media Contact

Gary Nabhan UA News

More Information:

http://www.arizona.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Distance learning can improve women’s access to vocational training as animal health care practitioners in Nepal. Image Credit: Heifer International

Hybrid Job Training Boosts Women’s Participation in Nepal

Globally, women’s workforce participation is about 25% lower than men’s, often due to barriers such as domestic responsibilities and cultural norms. Vocational training can increase employment opportunities, but women may…

CO2release increase under repeated drying-rewetting cycles (DWCs). Image Credit: Suzuki, Nagano et al., 2025 SOIL

Drying and Rewetting Cycles Boost Soil CO2 Emissions

Niigata, Japan – The amount of carbon dioxide (CO2) released by microbial decomposition of soil organic carbon on a global scale is approximately five times greater than the amount of…

A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers. Oregon State's Olena Taratula and collaborators including OSU postdoctoral researcher Babak Mamnoon and Maureen Baldwin, a physician at Oregon Health & Science University, designed a type of drug nanocarrier known as a polymersome to specifically target a protein in choriocarcinoma cells. Depicted is a polymersome with its methotrexate cargo. Illustration by Parinaz Ghanbari. Image Credit: Parinaz Ghanbari

Improved Treatment Method for Rare Pregnancy-Related Cancer

PORTLAND, Ore. – A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers, and it has potential with other…