Time-restricted eating reshapes gene expression throughout the body

Time-restricted eating reshapes gene expression throughout the body. In this illustration, the Ferris wheel displays the interconnected organ systems working smoothly during time-restricted eating, which is represented by the clock in the middle.
Credit: Salk Institute

Salk researchers find that timing calorie intake synchronizes circadian rhythms across multiple systems in mice.

Numerous studies have shown health benefits of time-restricted eating including increase in life span in laboratory studies, making practices like intermittent fasting a hot topic in the wellness industry. However, exactly how it affects the body on the molecular level, and how those changes interact across multiple organ systems, has not been well understood. Now, Salk scientists show in mice how time-restricted eating influences gene expression across more than 22 regions of the body and brain. Gene expression is the process through which genes are activated and respond to their environment by creating proteins.

The findings, published in Cell Metabolism on January 3, 2023, have implications for a wide range of health conditions where time-restricted eating has shown potential benefits, including diabetes, heart disease, hypertension, and cancer.

“We found that there is a system-wide, molecular impact of time-restricted eating in mice,” says Professor Satchidananda Panda, senior author and holder of the Rita and Richard Atkinson Chair at Salk. “Our results open the door for looking more closely at how this nutritional intervention activates genes involved in specific diseases, such as cancer.”

For the study, two groups of mice were fed the same high-calorie diet. One group was given free access to the food. The other group was restricted to eating within a feeding window of nine hours each day. After seven weeks, tissue samples were collected from 22 organ groups and the brain at different times of the day or night and analyzed for genetic changes. Samples included tissues from the liver, stomach, lungs, heart, adrenal gland, hypothalamus, different parts of the kidney and intestine, and different areas of the brain.

The authors found that 70 percent of mouse genes respond to time-restricted eating.

“By changing the timing of food, we were able to change the gene expression not just in the gut or in the liver, but also in thousands of genes in the brain,” says Panda.

Nearly 40 percent of genes in the adrenal gland, hypothalamus, and pancreas were affected by time-restricted eating. These organs are important for hormonal regulation. Hormones coordinate functions in different parts of the body and brain, and hormonal imbalance is implicated in many diseases from diabetes to stress disorders. The results offer guidance to how time-restricted eating may help manage these diseases.

Interestingly, not all sections of the digestive tract were affected equally. While genes involved in the upper two portions of the small intestine—the duodenum and jejunum—were activated by time-restricted eating, the ileum, at the lower end of the small intestine, was not. This finding could open a new line of research to study how jobs with shiftwork, which disrupts our 24-hour biological clock (called the circadian rhythm) impact digestive diseases and cancers. Previous research by Panda’s team showed that time-restricted eating improved the health of firefighters, who are typically shift workers.

The researchers also found that time-restricted eating aligned the circadian rhythms of multiple organs of the body.

“Circadian rhythms are everywhere in every cell,” says Panda. “We found that time-restricted eating synchronized the circadian rhythms to have two major waves: one during fasting, and another just after eating. We suspect this allows the body to coordinate different processes.”

Next, Panda’s team will take a closer look at the effects of time-restricted eating on specific conditions or systems implicated in the study, such as atherosclerosis, which is a hardening of the arteries that is often a precursor to heart disease and stroke, as well as chronic kidney disease.

Other authors include Shaunak Deota, Terry Lin, April Williams, Hiep Le, Hugo Calligaro, Ramesh Ramasamy, and Ling Huang of Salk; and Amandine Chaix of the University of Utah.

The research was supported by the National Institutes of Health (grants CA258221, DK115214, CA014195, and AG065993) and the Wu-Tsai Human Performance Alliance.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk’s mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology, and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature, and fearless in the face of any challenge. Be it cancer or Alzheimer’s disease, aging, or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Journal: Cell Metabolism
DOI: 10.1016/j.cmet.2022.12.006
Article Title: Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals
Article Publication Date: 3-Jan-2023

Media Contact

Salk Communications
Salk Institute
press@salk.edu
Office: 858-453-4100

Media Contact

Salk Communications
Salk Institute

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors