Sticking together without stickiness

Enzymes can cause a phase separation of a mixture
(c) Max Planck Institute for Dynamics and Self-Organization (MPI-DS)

Enzymatic reactions create micro-environments to organize cellular processes.

Inside cells, molecular droplets form defined compartments for chemical reactions. Not only sticky interactions between molecules, but also dynamic reactions can form such droplets, as it was found by researchers from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) and the University of Oxford. They revealed a new regulatory mechanism by which life controls and organizes itself.

Traditionally, cellular organelles defined by a membrane have been considered the functional units of a cell. In recent years, it was shown that also molecular droplets formed inside the cell provide a micro-environment for important reactions. Such droplets are not enclosed by a membrane, and arise from phase separation. Hence, they form dynamically and can be regulated according to the needs of the cell.

Nonequilibrium drives can induce droplet formation

In the department of Living Matter Physics, managing director Ramin Golestanian and coworkers aim to reveal the organizational principles of living matter. “The formation of droplets in cells so far was ascribed to attractive, sticky interactions between molecules – similar to how droplets form in non-living, equilibrium systems, such as droplets of oil in a vinaigrette,” explains Jaime Agudo-Canalejo, group leader at the MPI-DS. “We now found that the nonequilibrium drive provided by enzymatic reactions can cause the formation of enzyme-rich droplets, even without any stickiness. Instead, the enzymes are pushed against each other by the chemical fluxes they create” he continues.

The researchers explored this novel mechanism by formulating a model in which the effect of a multicomponent enzymatic reaction on the micro-environment is described. They also considered the underlying feedback mechanism due to which the induced phase separation can in turn affect the initial enzymatic reaction. “When the enzymatic activity gets too intense, phase separation occurs and acts to reduce it, providing a new form of autoregulation”, says Matthew Cotton, first author of the study. This complex interplay of molecular interactions can provide a dynamic environment for cellular processes. Hence, the model adds another piece to the complex puzzle of how life is able to organize itself.

Original publication:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.158101

More information:

https://www.ds.mpg.de/3977613/221027_Golestanian_phase_separation

Media Contact

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors