Single-atom tractor beams power chemical catalysis

Single-atom tractor beams power chemical catalysis
Credit: Research Team, Cavendish Laboratory, Department of Physics, University of Cambridge

Unlocking possible new ways to make light act powerfully and drive chemical transformations.

By trapping light into tiny gaps only a few atoms wide, a team from the NanoPhotonics Centre has magnified optical forces a thousand-fold, strong enough to force atoms into positions that drive chemical reactions more efficiently.

“We found a new way to beef up the forces from light, enough to now move metal atoms, and that’s key to reduce the energy barrier for making catalysis work more easily” co-lead researcher Shu Hu explains.

Weak tractor beams are used to make optical tweezers that can probe biological processes with beams of tightly-focussed light that trap transparent micro-objects of glass or polymer. But to use light to pluck single atoms from solids requires much stronger forces. Now a team from the NanoPhotonics Centre in the Cavendish Laboratory has shown a way to build tiny crevices that magnify the optical forces of visible light. They use these to pull single gold atoms from a crystal, approach them close to a molecular bond, and watch the effects directly on their flopping and vibration. Published in Science Advances , they show new ways to make light act powerfully, and suggest new approaches for driving chemical transformations.

Watching one bond at a time in their experiments avoids averaging over a crowd of different effects. “Single metal atoms are the anvil where catalysis forges new chemical bonds” promises Prof Jeremy Baumberg, “and we can start to watch this process happening and control it”. Catalysis is instrumental for all manmade chemicals and polymers.

“It’s like watching the beautiful dance of an atom and a molecule in real time” notes Hu.

Reference: https://www.science.org/doi/10.1126/sciadv.abp9285

Jeremy J. Baumberg, Shu Hu  et al. ‘ Optical suppression of energy barriers in single molecule-metal binding’ Science Advances. DOI: 10.1126/sciadv.abp9285

DOI: 10.1126/sciadv.abp9285

Media Contact

Pooja Pandey
University of Cambridge
pp550@cam.ac.uk

Media Contact

Pooja Pandey
University of Cambridge

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Distance learning can improve women’s access to vocational training as animal health care practitioners in Nepal. Image Credit: Heifer International

Hybrid Job Training Boosts Women’s Participation in Nepal

Globally, women’s workforce participation is about 25% lower than men’s, often due to barriers such as domestic responsibilities and cultural norms. Vocational training can increase employment opportunities, but women may…

CO2release increase under repeated drying-rewetting cycles (DWCs). Image Credit: Suzuki, Nagano et al., 2025 SOIL

Drying and Rewetting Cycles Boost Soil CO2 Emissions

Niigata, Japan – The amount of carbon dioxide (CO2) released by microbial decomposition of soil organic carbon on a global scale is approximately five times greater than the amount of…

A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers. Oregon State's Olena Taratula and collaborators including OSU postdoctoral researcher Babak Mamnoon and Maureen Baldwin, a physician at Oregon Health & Science University, designed a type of drug nanocarrier known as a polymersome to specifically target a protein in choriocarcinoma cells. Depicted is a polymersome with its methotrexate cargo. Illustration by Parinaz Ghanbari. Image Credit: Parinaz Ghanbari

Improved Treatment Method for Rare Pregnancy-Related Cancer

PORTLAND, Ore. – A new drug delivery system shows promise for treating a rare, aggressive form of cancer affecting pregnant women and new mothers, and it has potential with other…