Researchers Go Underground to Reveal 850 New Species

A national team of 18 researchers has discovered 850 new species of invertebrates, which include various insects, small crustaceans, spiders, worms and many others.

The team – led by Professor Andy Austin (University of Adelaide), Dr Steve Cooper (SA Museum) and Dr Bill Humphreys (WA Museum) – has conducted a comprehensive four-year survey of underground water, caves and micro-caverns across arid and semi-arid Australia.

“What we've found is that you don't have to go searching in the depths of the ocean to discover new species of invertebrate animals – you just have to look in your own 'back yard',” says Professor Austin from the Australian Center for Evolutionary Biology & Biodiversity at the University of Adelaide.

“Our research has revealed whole communities of invertebrate animals that were previously unknown just a few years ago. What we have discovered is a completely new component to Australia’s biodiversity. It is a huge discovery and it is only about one fifth of the number of new species we believe exist underground in the Australian outback.”

Only half of the species discovered have so far been named. Generically, the animals found in underground water are known as “stygofauna” and those from caves and micro-caverns are known as “troglofauna”.

Professor Austin says the team has a theory as to why so many new species have been hidden away underground and in caves.

“Essentially what we are seeing is the result of past climate change. Central and southern Australia was a much wetter place 15 million years ago when there was a flourishing diversity of invertebrate fauna living on the surface. But the continent became drier, a process that last until about 1-2 million years ago, resulting in our current arid environment. Species took refuge in isolated favorable habitats, such as in underground waters and micro-caverns, where they survived and evolved in isolation from each other.

“Discovery of this 'new' biodiversity, although exciting scientifically, also poses a number of challenges for conservation in that many of these species are found in areas that are potentially impacted by mining and pastoral activities,” he says.

The research team has reported its findings at a scientific conference on evolution and biodiversity in Darwin, Australia, which celebrates the 200th anniversary of Charles Darwin: www.evolutionbiodiversity2009.org. The conference finishes today.

The team's research has been funded by the Australian Research Council (ARC) Environmental Futures Network.

Professor Andy Austin
Australian Centre for Evolutionary Biology & Biodiversity
Environment Institute
The University of Adelaide
Office: +61 8 8303 8240
Cell phone: +61 438 378 151
andy.austin@adelaide.edu.au

Media Contact

Professor Andy Austin Newswise Science News

More Information:

http://www.adelaide.edu.au

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors