Research shows power of FRET-based approach for distinguishing among distinct states of proteins

The investigators created a large panel of novel mouse GAT1 transporters tagged with cyan or yellow fluorescent proteins (CFP and YFP) and optimized their expression in neuroblastoma cells. They determined the trafficking, subcellular localization, and oligomerization state of mGAT1 and correlated these features with transporter function.

One finding is that individual components of the FRET amplitude distribution reveal GAT1 dimers, high-order oligomers (likely tetramers), and oligomers associated via PDZ-mediated interactions with the actin cytoskeleton. Secondly, these details of the FRET amplitude distribution correlate with transporter function. Finally, the mGAT1 C-terminus PDZ-interacting domain is necessary for anchoring functional transporters to the actin cytoskeleton at the cell periphery; the corresponding FRET signal appears only in mGAT1 constructs with wild-type function. More generally, the results show the power of the FRET-based approach for distinguishing among distinct states of proteins.

About the Journal of General Physiology

Founded in 1918, the Journal of General Physiology (JGP) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JGP content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jgp.org.

Moss, F.J., et al. 2009. J. Gen. Physiol. doi:10.1085/jgp.200910314.

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rockefeller.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Roadmap to close the carbon cycle

A holistic approach to reach net-zero carbon emissions across the economy. A major approach to achieving net-zero carbon emissions relies on converting various parts of the economy, such as personal…

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

New regulator of eating behaviour identified

The rapidly escalating prevalence of overweight and obesity poses a significant medical challenge worldwide. In addition to people’s changing lifestyles, genetic factors also play a key role in the development…

Partners & Sponsors