'Fingerprints' help find genes involved in differentiation

In a report that appears in the journal Cell Stem Cell today, Dr. Margaret A. Goodell, professor of pediatrics and director of BCM’s STem Cells and Regeneration Center (STaR), and her colleagues described how they used their database to determine what was unique to each blood cell and what was common to all the cell types.

Understanding differentiation and what signals cause the early or progenitor cells to become the more specialized tissues that make multicellular organisms – such as mammals – possible is of vital concern to scientists and particularly stem cell biologists.

In this case, the scientists identified between 100 and 400 genes uniquely expressed in each cell type and termed these “lineage fingerprints,” because they mark the different cells that arise from the various stem cells.

“With unique genes, some will be responsible for generating those cell types,” said Goodell. She and her colleagues caused two of the genes (Zfp105 from the natural killer or NK cell lineage, and Ets2 from the monocyte (white blood cells with a singe nucleus that surround and ingest foreign materials) lineage to overexpress or make more than usual amounts of protein.

“They ended up driving differentiation,” said Goodell. That means that genes encouraged progenitor or early forms of the cells to become the mature or final blood cells that carry out specific tasks in the blood system.

“We are hoping that if we screen more of these genes that we can identify others that cause differentiation,” she said.

In the future, she said, scientists might consider ways to use the genes to help generate the differentiated cells in the laboratory as a particular form of treatment or developing drugs to block the action of the genes. Overproduction of certain blood or immune system cells can lead to cancer or autoimmune disease.

The three-year study involved considerable teamwork, said Goodell, with individuals in the lab taking responsibility for studies involving the different populations of blood cells.

Media Contact

Kimberlee Barbour EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors