Right angles are all wrong for tree frog adhesion

Conversely when walking or jumping they can detach their toe pads easily. Researchers from the University of Glasgow will present insights into how this fascinating ability is controlled at the Society for Experimental Biology’s Annual Meeting in Glasgow, UK.

“The toe pads of tree frogs are coated with a thin mucus which adhere to surfaces by wet adhesion, like wet tissue paper sticking to glass. The process by which they detach their toe pads is called peeling and is akin to us removing a sticking plaster from ourselves,” explains Dr Jon Barnes, head of the research group, “We were keen to understand why a tree frog on an overhanging surface didn’t simply peel off rather than adhere.”

To investigate this, scientists measured adhesive and frictional forces simultaneously on individual toe pads of White’s tree frogs (Family Hylidae), while varying the surface angle. It was found that the change from adhesion to peeling is a gradual process, with adhesive forces weakening at angles above 90°. Thus frogs maintain a grip by keeping the angle of their toes with respect to a surface at a low value, and detach when this angle increases beyond 90°. By examining the behaviour of the frogs researchers were able to correlate this observation with how the animals positioned their legs – they spread their legs out sideways to minimise the angle between their feet and the surface.

The researchers also visited Trinidad to address the problem faced by larger tree frogs, who do not adhere to surfaces very well. To partially compensate for this, larger frogs have adapted to grasp objects, and can climb in a similar manner to humans. Thus the largest species of tree frog are often found higher up in trees, while smaller species are commonly found in shrubs only a metre or so above the ground.

Media Contact

Gillian Dugan alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combining robotics and ChatGPT

TUM professor uses ChatGPT for choreographies with flying robots. Prof. Angela Schoellig has proved that large language models can be used safely in robotics. ChatGPT develops choreographies for up to…

How the Immune System Learns from Harmless Particles

Our lungs are bombarded by all manner of different particles every single day. Whilst some are perfectly safe for us, others—known as pathogens—have the potential to make us ill. The…

Biomarkers identified for successful treatment of bone marrow tumours

CAR T cell therapy has proven effective in treating various haematological cancers. However, not all patients respond equally well to treatment. In a recent clinical study, researchers from the University…

Partners & Sponsors