'Gateway' gene discovered for brain cancer

The researchers said their findings suggest that targeting Olig2 could offer a potential avenue for treatment that would kill tumor cells without affecting normal tissue.

Dana-Farber Cancer Institute investigators Charles Stiles and David Rowitch and their colleagues reported their findings in the February 15, 2007 issue of the journal Neuron, published by Cell Press.

Olig2 is a “transcription factor”—a protein that regulates the activity of genes. Prior studies had indicated that it plays a central role in enabling neural stem cells to replicate during embryonic brain development. Also, studies have suggested that brain tumors might arise from aberrant neural stem cells or the neural progenitor cells to which they give rise.

Analyzing tissue from human gliomas, Stiles, Rowitch, and their colleagues discovered that Olig2 is activated in the stem and progenitor cells found in the tumors. In a mouse model of malignant glioma, they found that knocking out Olig2 function prevented tumor formation in 91 percent of the animals.

Their analysis of the role of Olig2 in both tumor cells and normal neural stem cells revealed that it plays a key role in enabling cell growth. Specifically, they found that Olig2 represses the gene for a cell-replication “brake” called p21, which normally inhibits cell growth. Thus, they concluded that Olig2 is a “unifying feature of normal cell cells and malignant glioma” and a “gateway” gene for brain tumor development.

“Lineage-restricted pathways that regulate brain tumor behavior may represent more specific therapeutic targets with little potential to affect off-target cell types,” commented the researchers.

“Brain tumors remain a major cause of cancer-related death despite advances in surgery, imaging, and conventional treatment modalities,” they wrote. “This emphasizes the need to develop novel medical strategies based on a comprehensive understanding of the biological mechanisms underlying gliomagenesis.”

They wrote that “our findings identify this core transcriptional regulator as an important candidate for antitumor therapeutics.” While transcription factors are not generally considered useful targets for anti-cancer drugs, there are multiple ways that Olig2 could be inhibited, as well as ways to target other components of the regulatory pathway by which it exerts its influence on tumor growth, wrote the researchers.

Media Contact

Erin Doonan EurekAlert!

Weitere Informationen:

http://www.cell.com

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Flash graphene rocks strategy for plastic waste

Rice University lab detours potential environmental hazard into useful material. Plastic waste comes back in black as pristine graphene, thanks to ACDC. That’s what Rice University scientists call the process…

Towards next-generation molecule-based magnets

Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors. However, they are made up of heavy inorganic materials whose component elements…

Order in the disorder …

… density fluctuations in amorphous silicon discovered Silicon does not have to be crystalline, but can also be produced as an amorphous thin film. In such amorphous films, the atomic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close