What recognizes what in plant disease resistance?

In a new study published online this week in the open-access journal PLoS Biology, Tessa Burch-Smith, Savithramma Dinesh-Kumar, and colleagues show how one aspect of the plant immune system is defined by the gene-for-gene hypothesis: a plant Resistance (R) gene encodes a protein that specifically recognizes and protects against one pathogen or strain of a pathogen carrying a corresponding Avirulence (Avr) gene.

In tobacco and its relatives, the N resistance protein confers resistance to infection by the Tobacco mosaic virus (TMV). The authors used N, and the TMV Avirulence gene, p50, to investigate the mechanism of gene-for-gene resistance. Contrary to current models, which propose that recognition of resistance genes occurs solely through their leucine-rich repeat domain, the authors show that association is mediated by a completely different region on N's Toll-interleukin-1 receptor homology domain, which is structurally similar to animal innate immunity molecules. These findings provide novel insights into how R proteins recognize pathogen Avr proteins and should help in long-term efforts to enhance crop yield.

Media Contact

Natalie Bouaravong EurekAlert!

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Key breakthrough towards on-site cancer diagnosis

No stain? No sweat: Terahertz waves can image early-stage breast cancer without staining. A team of researchers at Osaka University, in collaboration with the University of Bordeaux and the Bergonié…

A CNIO team describes how a virus can cause diabetes

It has recently been described that infection by some enteroviruses – a genus of viruses that commonly cause diseases of varying severity – could potentially trigger diabetes, although its direct…

Targeting the shell of the Ebola virus

UD research team looking at ways to destabilize virus, knock it out with antivirals. As the world grapples with the coronavirus (COVID-19) pandemic, another virus has been raging again in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close