New nerve cells in diseased brain

Until the middle of the 1990s researchers believed that new nerve cells could not be generated in the adult brain. Then it was found to be possible, and that new nerve cells are formed not only in healthy brains but also in brains affected by disease and damage. Professor Olle Lindvall, Assistant Professor Zaal Kokaia, and their associates at Lund University were the first scientists to demonstrate that new nerve cells could be created from the stem cells of an adult brain following a stroke and then migrate to the damaged area.

However, it has been unclear just how these new nerve cells function. Do they behave normally, and are they beneficial or detrimental to a diseased brain? For the first time, Professor Olle Lindvall, Assistant Professor Merab Kokaia, doctoral candidate Katie Jakubs, and others have now managed to answer these questions on the basis of experiments on rats.

“Our study shows that nerve cells that are generated from stem cells in an adult epileptic brain develop into normal nerve cells. Interestingly, they also join up with other nerve cells in a way that indicates they are trying to counteract the diseased function,” says Olle Lindvall.

This work, carried out at the Section for Restorative Neurology and the Stem Cell Center at Lund University, is basic research, but it has potential clinical applications down the road. By learning more about how new nerve cells are formed and how they function, it may be possible in the future to help the brain heal itself after a disease or injury.

More information: Olle Lindvall, cell phone: +46 705-171466; e-mail: olle.lindvall@med.lu.se . The article is available at www.neuron.org.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors