New moth variety disarms plants guarded by selenium

The findings, reported by Elizabeth Pilon-Smits of Colorado State University and colleagues there and at the University of California, Berkeley, appear in the November 21st issue of the journal Current Biology, published by Cell Press.

Some plants “hyperaccumulate” the element selenium to extreme levels–up to 1% of the plant's dry weight. Selenium, an element with properties similar to sulfur, is an essential trace element for many organisms, but it typically is toxic at high levels, and the function behind the intriguing tendency of some plants to hyperaccumulate this element has been largely obscure. The so-called elemental-defense hypothesis proposes that hyperaccumulated elements serve a defensive function against herbivory, the predation of plants by animals.

In their new work, the researchers showed that the selenium in the hyperaccumulator plant species known as prince's plume (Stanleya pinnata) protects it from caterpillar herbivory both by deterring feeding and by causing toxicity in the caterpillar. However, the researchers also showed that in the plant's natural habitat, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed the plant's elemental defense. The new moth variety in fact thrives on plants containing highly toxic selenium levels and, in contrast to related varieties, was not deterred from either laying eggs or feeding on the plant. Furthermore, the researchers found that a selenium-tolerant wasp (Diadegma insulare) in turn parasitizes the selenium-tolerant diamondback moth.

Chemical analysis showed that the selenium-tolerant moth and its parasite both accumulate selenium in the form of methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related but selenium-sensitive moths accumulate selenium as selenocysteine. The latter form is toxic because of its ability to be incorporated into proteins.

The authors outline a possible course of events in the evolution of selenium tolerance in the newly discovered diamondback moth. Their overall conclusion is that although selenium hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique selenium-tolerant herbivores, thereby providing a “portal” for selenium into the local ecosystem–that is, a pathway by which selenium hyperaccumulation may spread within parts of the food web.

The authors point out that in a broader context, the findings potentially have implications for a number of ways in which selenium accumulation might be utilized in different ecological and agricultural circumstances. Applying selenium to plants may be an efficient way to deter herbivory and improve crop productivity, and if managed carefully, the supplied selenium could give added value to the crop (some evidence suggests that selenium has anticarcinogenic properties). Furthermore, the newly discovered selenium-tolerant moth may be used for biological control of plants that hyperaccumulate selenium in areas where such plants cause poisoning of livestock. In addition, the selenium-hyperaccumulator plant may also be useful for removing and dispersing selenium from polluted water and soil. The authors note that such use of native selenium hyperaccumulators or of selenium-enriched agricultural crops–for environmental cleanup or as a source of anti-carcinogenic selenocompounds–may have ecological implications, as is clear from the apparent rapid evolution of selenium-tolerant insects shown in this study.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.current-biology.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors