Sheep in human clothing – scientists reveal our flock mentality

Results from a study at the University of Leeds show that it takes a minority of just five per cent to influence a crowd’s direction – and that the other 95 per cent follow without realising it.

The findings could have major implications for directing the flow of large crowds, in particular in disaster scenarios, where verbal communication may be difficult. “There are many situations where this information could be used to good effect,” says Professor Jens Krause of the University’s Faculty of Biological Sciences. “At one extreme, it could be used to inform emergency planning strategies and at the other, it could be useful in organising pedestrian flow in busy areas.”

Professor Krause, with PhD student John Dyer, conducted a series of experiments where groups of people were asked to walk randomly around a large hall. Within the group, a select few received more detailed information about where to walk. Participants were not allowed to communicate with one another but had to stay within arms length of another person.

The findings show that in all cases, the ‘informed individuals’ were followed by others in the crowd, forming a self-organising, snake-like structure. “We’ve all been in situations where we get swept along by the crowd,” says Professor Krause. “But what’s interesting about this research is that our participants ended up making a consensus decision despite the fact that they weren’t allowed to talk or gesture to one another. In most cases the participants didn’t realise they were being led by others.”

Other experiments in the study used groups of different sizes, with different ratios of ‘informed individuals’. The research findings show that as the number of people in a crowd increases, the number of informed individuals decreases. In large crowds of 200 or more, five per cent of the group is enough to influence the direction in which it travels. The research also looked at different scenarios for the location of the ‘informed individuals’ to determine whether where they were located had a bearing on the time it took for the crowd to follow.

“We initially started looking at consensus decision making in humans because we were interested in animal migration, particularly birds, where it can be difficult to identify the leaders of a flock,” says Professor Krause. “But it just goes to show that there are strong parallels between animal grouping behaviour and human crowds.”

This research was funded by the Engineering and Physical Sciences Research Council and was a collaborative study involving the Universities of Oxford and Wales Bangor. The paper relating to this research, entitled Consensus decision making in human crowds is published in the current issue of Animal Behaviour Journal.

Media Contact

Jo Kelly alfa

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New materials: A toggle switch for catalysis

Electrochemical reactions, which will play an important role in the future of energy supply, can now be explained in detail, thanks to measurements carried out by TU Wien and DESY….

New approach to exotic quantum matter

While in a three-dimensional world, all particles must be either fermions or bosons, it is known that in fewer dimensions, the existence of particles with intermediate quantum statistics, known as…

Flood risks: More accurate data thanks to Covid-19

Emerging use of Global Navigation Satellite System (GNSS) makes it possible to continuously measure shallow changes in elevation of Earth surface. A study by the University of Bonn now shows…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close