Insect gut detects unhealthy meal

Study authors Dalial Freitak, David Heckel and Heiko Vogel from the Max Planck Institute for Chemical Ecology in Jena, Germany along with Christopher Wheat from the University of Helsinki, Finland, deliberately fed insects with non-infectious microorganisms.

The researchers watched to see how the herbivorous insect, the cabbage semilooper Trichoplusia ni (Lepidoptera), detected and responded to a diet laced with nonpathogenic, non-infectious bacteria. In most studies to date, lab reared insects have been injected with bacterial strains, whereas in nature the insects’ main exposure would be from eating plants.

The larvae were reared on diets with or without an added helping of Escherichia coli and Micrococcus luteus bacteria. In the bacteria-fed larvae, general antibacterial activity was enhanced, although the activity of one key enzyme related to immune response – phenoloxidase – was inhibited. Among the eight proteins highly expressed in the hemolymph of the bacteria-fed larvae were the immune-response-related proteins arylphorin, apolipophorin III and gloverin. Significantly, the pupation time and pupal mass of bacteria-fed larvae was negatively affected by their unhealthy diet.

The authors conclude that even non-pathogenic bacteria in food can trigger an immune response in insects with significant effects. “Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ,” says Vogel. Although this reaction to microbes comes at a price, it may be offering protection from serious infection. “These results show that microbial communities on food plants represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores,” he adds.

Media Contact

Charlotte Webber alfa

Weitere Informationen:

http://www.biomedcentral.com/bmcbiol/

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New solar cells for space

Almost all satellites are powered by solar cells – but solar cells are heavy. While conventional high-performance cells reach up to three watts of electricity per gram, perovskite and organic…

Development of a novel membrane laser module for spectral measurement methods

The Fraunhofer Institute for Applied Solid State Physics IAF has partnered up with the start-up “Twenty-One Semiconductors” (21s) from Stuttgart to bring their unique laser concept from lab to practice….

Dissecting protein assemblies

Super-resolution MINFLUX nanoscopy, developed by Nobel laureate Stefan Hell and his team, is able to discern fluorescent molecules that are only a few nanometers apart. In an initial application of…