Sperm’s immune-protection properties could provide link to how cancers spread

The new research, currently available online in the Journal of Biological Chemistry, analysed these markers which are believed to tell the female immune system that the sperm are not dangerous pathogens, and therefore should not be attacked by the woman’s white blood cells during the reproductive process. The study, led by Imperial College London and the University of Missouri, suggests that these sugar markers, found on N-glycans which are part of human sperm glycoproteins, can be universally recognised by all human immune systems, regardless of the individual.

Professor Anne Dell from Imperial College London’s Department of Life Sciences, one of the study’s lead authors, said: “Normal human cells carry chemical markers made of proteins which tell the immune system not to attack them. In the case of organ transplants, for example, doctors try to match these markers in both the donor and the recipient to prevent rejection. However, in the case of sperm cells, their sugar-based markers are different: they are recognised by everyone’s immune system, meaning that no immune response is triggered during reproduction between any two people.”

This kind of marker is also found on some types of cancer cells, some bacterial cells, some parasitic worms and HIV infected white blood cells. The scientists believe that these markers allow such dangerous cells and pathogens to evade destruction by the human immune system, leading to serious – sometimes fatal – illness.

Professor Dell explains that understanding how this basic biology works on sperm cells may lead to greater knowledge of how some serious diseases and infections manage to win the battle with the human immune system. She says:

“If aggressive cancers and pathogens are using the same system of universally-recognisable markers to trick the immune system into thinking they’re harmless, we need to work out exactly how this interaction works. This is where we’re planning to take this research next. Understanding how these markers work at a basic biological and chemical level could lead to new ways to treat or prevent cancers and other diseases in the future.”

Media Contact

Danielle Reeves alfa

More Information:

http://www.imperial.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Lower dose of mpox vaccine is safe

… and generates six-week antibody response equivalent to standard regimen. Study highlights need for defined markers of mpox immunity to inform public health use. A dose-sparing intradermal mpox vaccination regimen…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

Partners & Sponsors