Personalize your medication dosages

Illustration of the point-of-care testing (POCT) scenario. Credit: IMTEK – Laboratory for Sensors

Personalized drug therapy, adjusting the dose, dosage intervals, and the duration of treatment to fit individual patients’ needs, are getting more and more important. Frequently, medications are dosed in such a way that each patient receives the same standardized amount of a certain drug.

Thereby, clinical conditions of the patient, such as state of health, metabolism, or other physical factors, are often not sufficiently considered. A researcher team at the University of Freiburg has developed a bioanalytical method which can measure the class of β-lactam antibiotics in human blood on-site – in the operating room, intensive ward or doctor's office, as well as on a house call.

“This way, we can easily determine just how quickly the human body metabolizes a drug,” said the microsystems engineer Dr. Can Dincer, who is the head of the research team. The researchers recently published their results in the journal “Scientific Reports”.

This new method makes it possible to individually adjust the necessary dose of a medication for each patient. “We’ve proven the applicability of our system for a personalized antibiotherapy by on-site monitoring the clearance of drugs in two patients, who were treated with ß-lactam antibiotics, undergoing surgery” Dincer said. “Based on these results, our next step will be to perform a quantitative cohort study that will determine the usefulness of personalized antibiotherapy.”, he added.

Already at the end of 2016, the research team presented its biosensor technology that allows the rapid and simultaneous monitoring of different antibiotics in human blood (www.pr.uni-freiburg.de/pm/2016/pm.2016-11-14.159). In their recently published study, the scientists further developed their system by implementing another natural sensor protein that can quantify β-lactam antibiotics. In human medicine, β-lactam antibiotics are often used to prevent and treat infectious diseases.

Nine researchers from the University of Freiburg were involved in this interdisciplinary study: Richard Bruch, André Kling, Dr. Can Dincer and Prof. Dr. Gerald Urban from the Laboratory for Sensors of the Department of Microsystems Engineering (IMTEK); Balder Rebmann, Dr. Claire Chatelle and Prof. Dr. Wilfried Weber from the Synthetic Biology Lab of the excellence cluster BIOSS Centre for Biological Signalling Studies and the Faculty of Biology; as well as Dr. Steffen Wirth and Prof. Dr. Stefan Schumann from the Department of Anesthesiology and Critical Care of the University of Freiburg Medical Center.

Original Publication:
Richard, Bruch, Claire Chatelle, André Kling, Balder Rebmann, Steffen Wirth, Stefan Schumann, Wilfried Weber, Can Dincer, and Gerald Urban, Clinical on-site monitoring of ß-lactam antibiotics for a personalized antibiotherapy, 2017, Sci. Rep., 7, 3127, http://dx.doi.org/10.1038/s41598-017-03338-z.

Contact:
Dr. Can Dincer
Department of Microsystems Engineering – IMTEK
University of Freiburg
Phone: +49 (0)761 / 203 – 7264
E-Mail: dincer@imtek.de

https://www.pr.uni-freiburg.de/pm-en/2017/personalize-your-medication-dosages

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…

Satellite imagery showing vegetation loss due to multi-year droughts

Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather

A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…