New tool for investigating brain cells, Parkinson's, and more

After seeing exactly how the chemical compound UBP791 fits into a subunit (D1/D2) of an NMDA brain receptor (as visualized above by Furukawa's lab) chemists can now work on designing a version of the compound that fits into that subunit and no others. In this way, they work towards a level of chemical specificity ideal for experiments and drug design. Credit: Furukawa lab/CSHL, 2020

In the latest issue of Nature Communications, CSHL Professor Hiro Furukawa and colleagues detailed how they identified and perfected a chemical compound that inhibits, or stops the activity of certain NMDARs.

By inhibiting some NMDARs while letting others function, researchers can now identify the roles different types of NMDA receptors play in both healthy and diseased brains.

Jue Xiang Wang, a graduate of CSHL's Ph.D. program who helped lead the research, explained that the CSHL-Bristol team investigated how the novel compound UBP791 targets a pair of NMDAR subunits called GluN2C and GluN2D.

“There is evidence that GluN2C and GluN2D are relevant in the same brain regions where motor functions are affected by Parkinson's disease,” she said. “Without good inhibitors, we could only speculate on what the 2C and 2D receptors do.”

By inhibiting the activity of GluN2C and GluN2D receptors with higher efficiency and specificity than before, scientists can better study the role that they play in Parkinson's.

Video: https://www.youtube.com/watch?v=HQb2VczogL8

Furukawa's lab worked with Professor David Jane's chemistry lab at the University of Bristol to improve the NMDAR-targeting compound. The CSHL lab specializes in visualizing the physical structure of NMDARs using a technique called X-ray crystallography.

Knowing the structure of the receptor was critical for the chemists, who were then able to design UBP791 to connect specifically with the GluN2C and GluN2D receptors much like how a key is made to fit into specific locks. Studying what makes UBP791 fit particularly well further allowed the scientists to improve the compound, creating its latest version, UBP1700.

The UBP1700 compound is more precise than any of its predecessors and “it's also more potent,” said Wang. “That's important because researchers will only need small amounts of the compound to shut down the targeted receptors. This limits the potential for side-effects that the compound might produce.”

Moving forward, Furukawa's lab and their Bristol collaborators will be working on further refining the new compound for use in research.

Media Contact

Sara Roncero-Menendez
roncero@cshl.edu
516-367-6866

 @CSHL

http://www.cshl.edu 

Media Contact

Sara Roncero-Menendez EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Urban stormwater detention basin affected by salt pollution and salt-tolerant plants

Going Green: Fighting Freshwater Salt Pollution with Phytoremediation

Salt pollution in freshwater is a growing global concern. Excessive salt harms plants, degrades soil, and compromises water quality. In urban areas, road salts used for de-icing during winter often…

Illustration of leaky gut and inflammation in psoriasis research

Psoriasis Patients at Increased Risk for Crohn’s Due to Gut Inflammation

People with the skin condition psoriasis often have invisible inflammation in the small intestine with an increased propensity for ‘leaky gut’, according to new research at Uppsala University. These changes…

Vials of GLP-1 receptor agonist drugs illustrating benefits and potential risks

Popular Weight-Loss Drugs—Beneficial or Risky?

GLP-1 medications tied to decreased risk of dementia, addiction; increased risk of kidney, pancreas and gastrointestinal problems Growing Public Demand for GLP-1RA Weight-Loss Medications Demand for weight-loss medications sold under…